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Abstract

Although the theory of linear control systems is highly mature, nonlinear control-system design
techniques remain relatively undeveloped. In real-world applications such as vibration suppression
for flexible structures and large angle rigid-body spacecraft maneuvers, nonlinear plants generally
require nonlinear controllers, while linear plants often benefit from the implementation of nonlinear
controllers in the presence of structured plant uncertainty, actuator constraints, and nonquadratic
performance criteria. This report discusses progress in several areas relating to the role of non-
linearities in feedback control. These areas include Lyapunov function theory, chaotic controllers,
Statistical Energy Analysis, phase robustness, and optimal nonlinear feedback control.
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1.0 Introduction
1.1 Review of Linear Multivariable Control Theory

The bulk of current control-system practice is based upon linear control theory. Classical single-
loop design methods, whose basic development predates 1960, are widely utilized in practice. For
high-performance multi-loop applications, modern multivariable techniques are finding their way
into practice. A broad spectrum of linear multivariable control techniques has reached the graduate
curriculum (see, for example, the in-depth textbook [1]). Moreover, the advanced development of
such methods is reflected in the availability of several computer-aided design packages.

Within modern multivariable control theory there are several major thrusts of development
that can be identified. From a state space perspective, the original work of Kalman and others
has led to a rather complete theory of Hs-optimal linear-quadratic-Gaussian (LQG) control design
[2-4]. Furthermore, an elegant state space theory within a geometric rather than optimization
framework has been developed in [5]. Multivariable extensions of classical frequency-domain ideas
have undergone significant development along a number of paths. For example, classical ideas have
been generalized to the multivariable setting in [6,7], while an optimal design theory based upon a
frequency-domain (H,,) criterion was pioneered in [8] and further developed in numerous papers
(see, e.g., [9,10]and references therein). We also note the development of further sophisticated
approaches within an algebraic transfer function setting [11,12].

It is also worthwhile reviewing some recent trends in linear muitivariable control, namely, robust
control and controller simplification. Robust control refers to the need to effect desired closed-loop
performance (e.g., tracking and disturbance rejection) in spite of plant modeling uncertainties.
Within classical theory, the related concept of sensitivity plays a key role, while multivariable
problems require more sophisticated approaches. Numerous robust control-design techniques have
been developed under a variety of assumptions concerning the plant uncertainty. Unstructured
uncertainty is addressable via H,, methods [9,10], while specialized techniques are required for
more highly structured plant uncertainty; see, e.g., [13-16,1.20,1.30]. In addition, recent results
concerning the state space solution of H,, problems yield greater unification of state space and
frequency domain synthesis techniques [17-19,1.29).

The second trend in linear multivariable control theory we note here involves controller sim-

plification issues. While modern design techniques such as LQG theory produce high-order con-
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trollers, it is desirable in practice to employ the simplest controller meeting design specifications.
Here, “simplicity” may refer to dynamic dimension, number of digital operations, degree of de-
centralization, and other considerations affecting implementation, cost, reliability, etc. References

[20-24,1.23,11.89,11.91] are representative of progress made in this area.
1.2 Nonlinear Control Theory

“Nonlinear control theory” refers to control theory in which either the controller or the plant (or
both) is nonlinear. This theory is not as extensively developed as linear multivariable control the-
ory. The principal approaches to nonlinear multivariable control design include local linearization,
global linearization, the second method of Lyapunov, variable structure control, optimization-based
methods, and differential-geometric methods. With these general classifications in mind, we can
identify several advantages of nonlinear control over linear control. In this regard it is useful to
consider three cases in which the theory is applied (see Figure 1.2-1): (s) nonlinear control for linear

plants, (#) linear control for nonlinear plants, and (#5) nonlinear control for nonlinear plants.

The role of nonlinearities in control theory can best be understood by reviewing the assumptions
and limitations of standard linear-quadratic-Gaussian (LQG) theory. As its name implies, LQG
theory is based upon three fundamental assumptions (Figure 1.2-2)

e the plant dynamics and measurement equations are linear in both the state and control

variables
e the performance measure to be minimized is quadratic
e the plant disturbances and measurement noise are additive Gaussian white noise
In addition to these ezplicit assumptions the following implicit assumptions are crucial:
e the plant model is completely accurate
e mean-square control effort is limited

Under these assumptions, a major result of modern control theory (2] states that the opti-
mal controller is given by the linear controller consisting of the Wiener-Kalman filter followed by
the optimal linear-quadratic regulator. Hence in this case nonlinear controllers cannot improve

performance.
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o LINEAR PLANT
« LINEAR CONTROLLER

« QUADRATIC COST
e EXPONENTIAL DECAY
« UNSTRUCTURED UNCERTAINTY
v v
» LINEAR PLANT e NONLINEAR PLANT
« NONLINEAR CONTROLLER e LINEAR CONTROLLER
 NONQUADRATIC COST « ROBUSTNESS
e ACTUATOR SATURATION « LINEARIZATION

e STRUCTURED UNCERTAINTY
« FINITE SETTLING TIME

o NONLINEAR PLANT
= NONLINEAR CONTROLLER

« EXTENDED DOMAIN OF ATTRACTION
« NONQUADRATIC COST

Figure 1.2-1. In nonlinear control theory, the plant and/or controller is nonlinear.
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@ QUADRATIC COST

@® LINEAR DYNAMICS AND MEASUREMENTS
® ADDITIVE GAUSSIAN DISTURBANCES

@®  NO MODELING UNCERTAINTY

® MEAN-SQUARE ACTUATOR BOUNDS

@® LINEAR CONTROLLER IS OPTIMAL
(LQG THEORY)

@ NONLINEAR DYNAMICS AND/OR MEASUREMENTS

@ NONGAUSSIAN, NONADDITIVE DISTURBANGCES
@® MODELING UNCERTAINTY
@® NONQUADRATIC COST

® AMPLITUDE ACTUATOR BOUNDS

@ NONLINEAR CONTROLLER IS OPTIMAL

Figure 1.2-2. Linear controllers are generally optimal for only a narrow class of linear-quadratic-

Gaussian problems.
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Suppose, however, that not all of the assumptions of LQG theory are valid for a given problem,

that is, one or more of the following conditions applies:
o the plant dynamics and/or measurement equation is nonlinear
e the disturbances are either nonadditive or non-Gaussian
o the relevant performance measure is nonquadratic
e the plant model is uncertain
e control effort is limited by amplitude (Lo,) or total fuel (L;) constraints.

In real world applications, of course, all of these conditions apply, at least to some extent. The
actual extent to which each one must be considered is problem-dependent. In each of these cases
there is no reason to expect that a linear controller is optimal or even appropriate. Nevertheless, it is
still desirable for a variety of reasons to seek linear controllers, and much of control theory has been
directed toward this goal. Ultimately, however, we are faced with the following question: When
is it necessary or advantageous to implement nonlinear controllers in place of linear controllers?
Nonlinear controllers will generally entail more difficult performance validation and implementation
complexity (Figure 1.2-3). Furthermore, we note that an additional level of controller complexity
involves time-varying control (for either linear or nonlinear controllers) (Figure 1.2-4). We now

examine the possible benefits of nonlinear controllers.
1.3 Linear Versus Nonlinear Controllers

Let us first consider the problem of nonlinear plant dynamics. Such nonlinearities arise in a
wide variety of engineering applications [25]. Nevertheless, linear control theory has been developed
to deal with large classes of nonlinearities, for example, as bounded by a sector [26-28]. Lure’s
problem, the Aizermann conjecture, and the circle and Popov criteria are all traditional control

theory topics dealing with nonlinearities.

In many applications, however, the nonlinearities are well modeled to the extent that their
detailed structure can be exploited in control design. For example, in the case of a single rigid

body we have Euler’s equation

Jo+wx Jw = f(u),

where J denotes the moment of inertia, w denotes angular velocity, and f(u) denotes applied torque.
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GREATER GENERALITY

* IMPROVED PERFORMANCE
FOR MODELING ACCURACY

* MORE COMPLEXTO
IMPLEMENT

* HARDER TO VALIDATE

-—

LINEAR
TIME-INVARIANT |GAIN SCHEDULED C%%%Efga . SSTAQL% i
CONTROLLER | LTI CONTROLLER

—

* MORE RESTRICTIVE CONTROLLER CLASS

* PERFORMANCE LIMITED BY MODELING ACCURACY
" SIMPLER TO IMPLEMENT

" EASIER TO VALIDATE

DESIGN GUIDELINES

* TRY TO MEET PERFORMANCE SPECIFICATIONS
WITH SIMPLEST POSSIBLE CONTROL LAW

+ |IF SPECIFICATIONS CANNOT BE MET, THEN
INCREASE CONTROL LAW COMPLEXITY AND
ASSESS PERFORMANCE/IMPLEMENTATION/
VALIDATION TRADEOFFS

Figure 1.2-3. Nonlinear controllers offer improved performance, but may entail
greater implementation and validation complexity.
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Linear Time-Invariant Nonlinear Time-Invariant
v v
Linear Time-Varying Nonlinear Time-Varying

- SE 0 S S G OE B SR T A O an T

Figure 1.2-4. Linear and nonlinear controllers may be either time-invariant or time-
varying.
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The quadratic gyroscopic term w x Jw is significant in rapid maneuvers involving large structures.
Since the structure of the nonlinearity in this case is crucial, we expect nonlinear controllers to play

a role [29-57].

Next consider the problem of optimizing a nonquadratic performance measure. In this case it
can generally be expected that linear controllers are not optimal. Time-optimal performance leads
to bang-bang controllers, which are nonlinear, while higher-order (polynomial) performance mea-
sures lead to higher-order feedback laws [58-68]. For example, consider the effect of a nonquadratic
performance measure as addressed in [68]. As shown in Figure 1.2-5, a super-linear state feedback
(in this case a quadratic control) can efficiently regulate sﬁaﬂ amplitude signals, even driving the
state to zero in finite time (if one neglects measurement and disturbance noise effects). A theory
of sublinear control for finite-time control is developed in [69]. An additional performance aspect

is transient behavior [70] which is difficult to capture by means of scalar performance measures.

There are, however, nonquadratic performance measures for which the optimal controller 1s
linear. In particular, this is the case for H,, optimal control. For this problem the goal is to
minimize the worst-case disturbance attenuation over all frequencies. The H,, problem differs
mathematically from the LQG problem due to the modeling of disturbances ‘and error signals as
deterministic L, functions. Connections with the LQG setting can be established by means of an
exponential-of-quadratic performance functional with white noise disturbances [71-84].

Problems involving uncertain plant models have motivated the subject of robust control theory.
One approach to robust control involves modeling the uncertainty by means of the H,, norm and
then applying H,, theory to guarantee robust stability and performance. In this case and for
related problems in robust control, it has been shown that nonlinear controllers offer no advantage
over linear controllers [85-90]. Though valuable, these results consider only restricted uncertainty
characterizations (e.g., unstructured uncertainty) [86-88], very special performance measures (e.g.,
H,, performance) [85], or limited definitions of stability (e.g., quadratic stability) [90]. In fact, from
the previous discussion on the optimality of nonlinear controllers for nonquadratic performance
criteria, it is reasonable to conjecture that for a variety of system performance measures nonlinear
controllers can yield better robust performance than linear controllers. In fact, it is even possible

that the controller that solves the robust quadratic performance problem

o0
min{ max / (zTRyz + uTRgu)dt},
u(t) | (a4,4B)eu Jo
z(t) = (A+ AA)z(t) + (B + AB)u(t),
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Bx(e)l

3 . |
p=3 = -2|jz]lz = EFFICIENT REGULATION FOR LARGE AMPLITUDES
p=1 : u=-2z=> EXPONENTIAL DECAY (LINEAR)

3
p=1 = -2|jz]~#z = EFFICIENT REGULATION FOR SMALL AMPLITUDES

Figure 1.2-5. As shown in [68], nonlinear controls can be shaped to give efficient regulation

for various, selected vibration amplitude regimes.
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is a nonlinear controller. Results that indicate that nonlinear controllers can yield improved ro-

bustness properties are given in [91-94].

An additional advantage of nonlinear controllers is the ability to address actuator saturation
limitations. In practice any electromechanical device used as a control actuator is subject to
limitations on maximum force, torque output, power consumption, stroke, and angular speed limits.
Thus, in reality, control-design optimization must account for constraints on the maximum value
of actuator force or similar constraints on internal signals associated with the actuator dynamics.
The simplest such realistic constraint takes the form of a pointwise bound on the actuator force
output, i.e.,

|u(t)] < Gmax,

where @iy, is the largest physically possible magnitude of the actuator output. The above pointwise

bound is an example of an L., design constraint and differs crucially from L; constraints such as
E[u?] < o?

or
/ u?(t)dt < o?,
0

which correspond to power and energy constraints, respectively.

Figure 1.2-8 illustrates the ramifications of pointwise bounded actuator constraints. Suppose
that the plant is linear except for the physical constraint |u(t)| < fimsx and that the system is
subject to an initial impulse disturbance. If one designs an optimal regulator using the integral
square condition (for analytical convenience) as the constraint on the optimization problem, then
the resulting controller is linear. Moreover, one can choose linear gains such that the peak actuator
output is less than the physically imposed limit of imax. Then (see the top half of Figure 1.2-6),
following the initial disturbance, all signals, including the actuator output, decay exponentially.
Note that although u(t) just satisfies the physical constraint |u(t)| < Gmax for small ¢, for larger
t, |u(t)| is small. Thus, in this case actuator capability is wasted. On the other hand (see bottom
half of Figure 1.2-6), it is possible to design a sublinear feedback control for which the actuator
uses nearly its full capacity while the system state is driven to zero faster than exponentially. In
fact, it is well known that minimal-time maneuvers actually require bang-bang control. Variable
structure (nonlinear) controllers, which can be viewed as generalizations of bang-bang controllers,

can also be used to control linear systems while efficiently utilizing actuator capabilities.
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LINEAR OPTIMAL SATISFYING .‘ oUdt SU .
EXPONENTIAL Y ax — /"_/q" F,OC“R “"mg‘: SIGNALS
DECAY CONSTRAINT
JUST SATISFIED
x 4
' h \/ /

FOR SMALL SIGNALS, u(t)
SMALL —& ACTUATOR
CAPABILITY WASTED!

"SUBOPTIMAL" NONLINEAR CONTROL

= ACTUATOR RUN

Y tax &~ NEARFULL
CAPACITY BUT
WITHIN ITS UMITS

f t
FINITE TIME
TO ZERO

.‘. NONLINEAR CONTROLS CAN MORE EFFICIENTLY
UTILIZE REALISTIC ACTUATOR CAPABILITIES

Figure 1.2-6. Nonlinear controllers can utilize actuators more efficiently than linear con-
trollers in the presence of saturation bounds.
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A specialized class of nonlinear controllers for linear plants is the class of adaptive controllers.
In contrast to fized-gain controllers, which maintain prespecified constants within the feedback law,
adaptive controllers adjust feedback gains to improve closed-loop stability and performance when
the plant is uncertain. Adaptive controllers generally utilize probing signals to excite the plant
dynamics and thereby identify plant parameters. Feedback gains can then be adjusted to account
for the identification data. The overall process of identification and adjustment clearly constitutes a
nonlinear control law. Thus, the adaptive control literature can be viewed as a specialized subclass
of nonlinear control, although for historical reasons this categorization is rarely utilized. For our
purposes, viewing adaptive controllers as nonlinear controllers is particularly useful. For example,
as discussed above, nonlinear controllers can be viewed as a specialized form of robust controllers
for uncertain linear plants.

The distinction between nonlinear controllers and adaptive controllers has narrowed in recent
years with the development of adaptive controllers not requiring explicit probing signals [95-102].
These results show that there exist nonlinear controllers that can stabilize generic classes of sys-
tems characterized by minimal a priori data. Although these controllers are usually thought of as
adaptive since the feedback gains are continually adjusted, the feedback laws are clearly nonlinear
controllers of special structure.

1.4 Overview of this Report

The central result of control system analysis and design is Lyapunov’s method. The ability
to construct a positive-definite functional that decays along system trajectories is sufficient to
guarantee asymptotic stability. Design via Lyapunov functions need not be associated with the
optimization of a performance measure although, as discussed in Section 5, the converse is often
true, that is, optimal design may be predicated on a Lyapunov function. Hence, in our view,
Lyapunov’s method ultimately comprises the most fundamental technique in nonlinear (as well as
linear) control theory.

This program is thus focussing on several problem areas relating to Lyapunov theory. The
interrelationships among these areas is shown in Figure 1.4-1. In Section 2 we describe progress
in analyzing energy flow in coupled mechanical systems. The results obtained thus far extend the
foundations of Statistical Energy Analysis. In Section 3 we apply the results of Section 2 along
with applications to the design of chaotic controllers for enhanced energy dissipation. Section 4 is
devoted to progress in developing a theory of robustness due to phase properties. Finally, Section

5 discusses optimal nonlinear control theory.
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STATISTICAL
ENERGY
ANALYSIS

PHASE
ROBUSTNESS

THEORY

OPTIMAL NONLINEAR
CONTROL THEORY

LYAPUNOV FUNCTIONS

MAJORANT
THEORY

CHAQTIC
CONTROLLERS

NEURAL NET
CONTROLLERS

Figure 1.4-1. The program focusses on several related research problems relevant to nonlinear
control.

Harris Corp. 1-13 December 1990




2.0 Power Flow and Statistical Energy Analysis




2.0 Energy Flow and Statistical Energy Analysis

It is well known from thermodynamics that energy flows from hot objects to cold objects.
It is less well known, however, that a similar phenomenon occurs in coupled mechanical systems
with modal energy playing the role of temperature. Energy and power flow concepts, often called
Statistical Energy Analysis (SEA), have proven to be useful tools for analyzing linear dynamic
systems [237-249]. Hence this phase of the program is devoted to the further development of these
ideas to support nonlinear analysis and design. In Section 3 these ideas are used to analyze and
design chaotic feedback controllers.

2.1 Energy Flow in Coupled Dynamical Systems

The objective of SEA is to model energy flow among coupled dynamical subsystems. SEA
was originally developed for acoustical analysis involving very large numbers of modes that may
be poorly modeled. Many of the concepts of SEA as applied to high dimensional systems (such as
equipartition of energy) have close connections with statistical mechanics of many particle systems.
Although SEA theory has been widely applied, rigorous analytical results have been available only
for identical couplings or for weak interactions. Under this program we have extended SEA theory
to address an arbitrary number of subsystems with arbitrary coupling.

In this section we summarize results on SEA which are developed in the paper entitled “Power
Flow, Energy Balance, and Statistical Energy Analysis for Large-Scale Interconnected Systems.”
This paper, which contains all details of the results reported here, appears in Appendix C.

To summarize these results consider the system
t=Az+Gz+ w, (1)

where the state z € C™, the uncoupled dynamics matrix A is given by
A=-v+3iN+H,
v = diag (¥1,...,vs) ER™™", y; >0,
H = diag (Hy,. .,H,) € C™*",
N = diag (24,...,12,) € R"*",

and where G denotes the coupling among subsystems, that is,

GecCc™*n, Gi =0, 1=1,...,n.
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The additive forcing w(t) is taken to be white noise with intensity V' > 0.
The first step of our approach is to note that for an output signal
z=Crt, (2)
the steady-state mean-square response is given by
J = lim IE[z*2]
t—00 (3)
= wr[CTCQ),
where
- .
Q= tl_xgxo IE[zz"].

It is well known that the steady-state covariance Q is given by the algebraic Lyapunov equation

0=AQ+QA*+GQ+QG* +V. (4)

In many practical situations it can be argued (see Appendix C) that the principal contribution
to J is due to the diagonal elements of Q. Hence our main result is based on a direct characterization
of the diagonal elements of Q in terms of V', which is obtained by eliminating the off-diagonal
elements of Q. To do this, we rewrite (4) as

0=A{Q}+{Q}4* +{G(Q)} + {@Q)G"} +{V}, (5)
0= A(Q) +(Q)A" + (G(Q) + ((@)G") + G{Q} + {Q}G", (6)

where {-} and (-) denote the diagonal part and off-diagonal part of a matrix, respectively. Here we
have assumed for convenience that (V) = 0.

Next, we apply Kronecker matrix algebra to solve (5), (6) for {Q} in terms of {V}. To state
the main result define the vector F of steady-state mean-square state energi.'s

(2

where E; 2 Q,;, i =1,...,n, and the vector

Vi
f’ = R
Vﬂﬂ
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which corresponds to {V'}. Then we obtain the following consequence of (5), (6):

(n+P)E=V, ()
where ’
p< diag {2v1 — 2Re(H1),...,2v, — 2Re(H,)}, (8
and
P=ET(GoG). (A A)® (GoG) . .(GoG)E. (9)

In (8) and (9), “Re” denotes real part, ® denotes Kronecker sum, and £, £, and £ denote n3 x n3
matrices of special structure whose element are ones and zeros. It can be shown that 7 is real.

To elucidate the meaning of (7) we can write its kth component as

(2vx —2Re HY)E, + I, = Vik, (10)
- - , . > —
power dissipated power flow power input
by the kth mode from the kth mode due to external
due to damping to all other modes disturbances
due to coupling
where /T; has the form n
Iy = z: PueEe, Pre€IR. (11)
=1 :

The matrix P can be viewed as a power flow matrix, while relation (10) thus has the form of a

power flow equation. To arrive at an energy balance relation we consider the case in which
Pee <0, k#¢ kit=1,...,n. (12)

This occurs, for example, if the subsystem coupling is sufficiently weak. If, in addition, the couplings

are energy conservative (for example, passive), then it can be shown that

Pe=3_ |Puel, k=1,...,n (13)
2} Y

L 2]

Then, defining o4 = | Pee|, k # ¢, 80 that o, > 0, it follows from (11) that

Hb = Z”kt(Ek - Et). (14)
i
In other words, power flow from the kth mode to all other modes is the sum of the individual

power flows from mode k to mode £, which are proportional to the energy differences E; — E,.
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Note that power always flows from more energetic modes to less energetic modes (because of the

nonnegativity of the coefficients o). Substituting (14) into (7) yields

”
peEi+)_ or(Er - E) = Vi, (15)
tml

[2 1]
which is an energy balance relation. Equations (10) and (15), which govern energy exchange among
coupled oscillators, are completely analogous to the equations of thermal transfer with the modal
energies playing the role of temperatures.

In physical situations involving nonconservative couplings, we have shown that although (13)
no longer holds, it is still possible in the case of weak couplings to obtain a generalized power flow
proportionality. In this case there exists a set of positive scale factors Dy >0, k=1,...,n,such
that, with £ 2 ﬁ:Eh, the energy difference power flow proportionality is given by

n
Iy = E a’u(E), - Eg), (16)
(233
[ 1]

where &3, 2 D,oie. Note that (18) is not merely a rewriting of (14) since in general Dy # D,.
With (18), the energy equation (7) assumes the form of a generalized energy balance relation given
by n
BBy + zéu(ﬁh - B) =W, (17)
-

[ 0]

where k = 1,...,n. That is, there is a set of re-scaled energies such that (7) looks like the equations
of thermal transfer.

Furthermore, while deriving energy difference power flow proportionality relations, we have
also shown that the explicit expressions given for the power flow matrix P in the SEA literature
are actually first-term approximations in a series expansion for P. Indeed, it turns out that 7,
which is given by a complicated expression involving »,{2, H, and G, agrees with the customary
SEA expressions for “small* G. This in done by obtaining explicit expressions for the terms of a
series expansion of P in ascending powers of the matrix elements of G.

Since the modal energies obey equations analogous to those of thermal transfer, it might be
expected that if the coupling coefficients G, are large compared to the modal dampings, then the
energies should be approximately equal, that is,

Ey~Ey~..-~E, (18)
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The paper in Appendix C provides a formulation and proof of this “energy equipartitioning” phe-

nomenon.
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3.0 Chaotic Controllers

In Section 2 we explored the notions of power flow and energy balance in interconnected systems.

Our next goal is to apply these ideas to the analysis and design of nonlinear feedback controllers.

To do this we need only view the plant and controller as a pair of interacting subsystems. If
disturbance rejection is an objective, then we seek to design a controller that maximizes power flow
from the plant to the controller. Within an H,, context this idea has been explored in the recent

paper

D. MacMartin and S. R. Hall, “An H,, Power Flow Approach to Control of Uncertain Struc-
tures,” Proc. Amer. Contr. Conf., pp. 3073-3080, San Diego, CA, May 1990.

One of the main ideas discussed in this paper is that power flow out of the structure is maximized
to the extent that the controller is able to match the impedance of the plant.

In this section we develop a nonlinear controller that exploits the phenomenon of chaos. Our
principal goal is to demonstrate that this controller can enhance power flow from the plant to the
controller by introducing nonlinearities that induce broadband spectral properties in the controller.
A power flow analysis is then used to show that energy can be transferred more efficiently between
arbitrary plant and compensator modes. Details of these results are given in “A Nonlinear Vibration
Control Design with a Neural Network Realization” which appears in Appendix D.

3.1 Turbulence Model for Chaotic Controller Design

A unique feature of nonlinear systems is the energy cascade mechanism illustrated in Figure
3.1-1. Here, energy originally injected within some lower frequency band can be dispersed to higher
frequency bands by virtue of coupling among the vibrational modes of the structure. Eventually
the energy is transferred to very high frequencies where it is dissipated into heat by means of
natural structural damping or by the action of an additional energy dissipative control law. Thus,
a nonlinear controller such as illustrated in Figure 3.1-1 can be viewed as a catalyst for transmuting

vibration more rapidly into heat.

The controller illustrated in Figure 3.1-1 can be realized by a purely mechanical device con-
sisting of a chamber containing a number of particles of given mass that undergo free translational

motion except for collisions with the chamber walls and with one another. This is essentially the
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e SUCH NONLINEAR CONTROLLERS ARE A CATALYST FOR TRANSMUTING
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e COMPENSATOR (BY ITSELF) COULD BE CHAOTIC. BUT WHEN
INTERCONNECTED WITH THE PLANT, ITS DAMPING PERFORMANCE IS
EXTREMELY ROBUST.

Figure 3.1-1. Another unique aspect of nonlinear control is energy cascade via mechanical

turbulence.
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impact-damper control mechanism which received some attention in the 60’s to mid 70’s (for exam-
ple, in connection with buffet alleviation in aircraft, see [164,165], but which was not subsequently
pursued because of mechanical implementation difficulties. With present-day high-speed processors,
however, such a nonlinear compensator can be implemented electromechanically using a colocated
rate sensor/force actuator pair. However, it is not suggested that research be focused on the impact
idea per se. Rather, such devices are mentioned here solely to illustrate the potential of chaotic
compensators and to elucidate some fundamental aspects that might be suitably generalized within
a rigorous design optimigation theory. The term chaotic compensator is used because, considered
by itself, the nonlinear controller displays chaotic motion. For example, suppose that one discon-
nects the chamber from the structure and measures the response to sinusoidal inputs. If there is
no energy loes in collisions, then the system will display homoclinic tangles of great complexity.
With some energy loss mechanisms, chaotic attractors will result. Thus, the compensator shown
in Figure 3.1-1, when considered alone, is a chaotic system. However, the intriguing aspect here
is that when this chaotic compensator is interconnected with the plant, its damping performance
is quite effective and extremely robust. It is important for reliable implementation of effective

compensation to understand and exploit the underlying mechanisms involved in this example.
3.3 Lyapunov Setting for the Chaotic Controller

Lyapunov theory provides the foundation for devising a controller that emulates the behavior

of a chaotic compensator. Consider the plant with dynamics

z = fi(z) + fa(z)y, (1)
y =3 (2)z, (2)

where z € IR", u € IR™, y € IR™, and dynamic feedback controller

£o = fer(%e,y) + fea(ze, )y, (3)
u = —f5(Ze, )z, (4)

where z, € IR™. Note that the controller uses only the available measurement y, although the
plant is assumed to have a colocated-type symmetry as in a force-to-velocity model of a flexible
structure. We assume that f,(-) is dissipative, that is,

2T fi(z)+ ff(z)z <0, zeR™, z#0, (5)
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and that f;,(-,y) is also dissipative for all y € IR™. In this case the closed-loop system has the

form

i = f(%), (6)
where
~a|lZ
= z,
and

- a fl(z) - fz(z)f;l;(zc’y)zc
f(®) =

for(ze,y) + fea(ze, V)f;r(”)z
with y given by (2). Using the energy Lyapunov function V(%) = #7Z it is easy to show that
%V(E) < 0 along trajectories of (6).

Let us now specialize to the problem of vibration suppression. Hence consider the plant model

. 0 n 0 in 1
z—[_n _2nn]z+[b]u, zeR*"™, ueR", (7

where
N £ diag {2} = modal frequencies,

n < diag {7} = modal damping ratios,
b = modal actuator influence coefficient, b € IR",

with scalar measurement

y=>bTz,. (8)

Consider now the compensator
Z, = ([—(.)f-) —gjf)] + 2al0 eT]ch) z.+K [S] y?, (9)
w=-x(0 Ty (10)

where z, e R¥™, x>0, a>0,eT=[11... 1],
1= diag {f}}, 2,>0,i=1,...,n,,

= dia.g {ﬂ.’}, ii.'>0, i=l,...,n¢,

and
0 1 1 1
-1 0 1 1
s=1-1 -1 o0 1| =-8T. (11)
-1 -1 -1 0
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Note that the plant and compensator are of the form (1)—(4).

The choice of feedback controller can be understood by means of Figure 3.2-1. The underlying
idea is to transfer vibrational energy from the structure to the controller as efficiently as possible and
to exploit the natural dissipation of the controller. To do this, the controller dynamics equation (9)
involves an input term proportional to y? to create higher-order harmonics of the natural structural
frequencies. These harmonics are uniformly distributed to a portion of z, by means of the vector
et =11 ... 1]. The compensator dynamics involve a dissipative linear term [—?ﬁ __gm] to
set up its own modes of vibration. In addition, (9) involves a skew-symmetric term S that serves
to uniformly distribute, or “mix,” motion of all compensator states while performing modulation
(that is, creation of higher harmonics) by means of [0 eT|z,. Finally, the control signal given by
(10) again serves to modulate the measurement y by the compensator harmonics.

The intention of this compensator is to purposefully create chaos within the controller. There
are two principal reasons for this intentional chaos. First, the structure itself has the ability to
dissipate energy by means of the damping associated with its natural modes of vibration. Hence,
by creating higher frequency harmonics, the compensator can efficiently distribute low-frequency
energy, thereby exploiting the natural structural dissipation to the greatest possible extent.

The second motivation for this compensator structure, as already discussed, is to maximize the
exchange of energy between the plant and compensator. Roughly speaking, energy will be trans-
ferred from the structure to the compensator if there is a significant level of impedance matching.
The chaotic motion within the compensator serves to establish a broadband spectrum to enhance
impedance matching and thus energy transfer.

To numerically demonstrate these concepts, we considered a 40th-order (20 modes between 1
and 20 rad/sec) lightly damped (.2% damping) plant model with a 40th-order compensator utilizing
12 = 2. To demonstrate the controller characteristics, we considered the closed-loop response from
a nonsero initial condition. Specifically, the lowest frequency mode (1 rad/sec) was assigned an
initial amplitude of unity and an initial velocity of zero, with all other modes at equilibrium.
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Figure 3.2-1. The controller serves as a mechanism for augmenting energy dissipation.
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Figure 3.2-2. The time response of the lowest frequency mode exhibits rapid attenuation due

to chaotic compensator dynamics.
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Figure 3.2-2 shows how the amplitude of the first mode is quickly reduced to a low level with the
remaining response composed of broadband motion. In addition, Figure 3.2-3 shows the spectrum
of the measurement signal y(t). This plot shows that the structure undergoes significant vibration
outside of the modal bandwidth (approximately 4 Hz). This motion, which is due to the nonlinear
coupling induced by the controller, shows that energy is transferred from low frequency to high
frequency. Since the high frequency modes dissipate energy more efficiently than the low frequency
modes (they go to zero like e~"s%st), the controller serves as an efficient mechanism for vibration

suppression.
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Figure 3.2-3. The spectrum of the measurement signal demonstrates significant out-of-band
energy due to the nonlinear cascade mechanism.
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4.0 Phase Robustness Theory

Hoo theory accounts for modeling uncertainty by bounding a weighted Ho, norm characteri-
sation of plant uncertainty. The Ho, norm does not account for phase, however, which can play
an important role in robustness analysis. For example, the magnitude of plant uncertainty can be
arbitrarily large as long as the phase of the uncertainty is such as to avoid instability.

Our interest in the role of phase information in robust control is based upon connections to
power flow concepts. As will be seen, power flow and stability analysis involving passive systems can
be extremely conservative if a small gain (H,,) approach is used. What is lacking is the treatment
of phase properties which become manifested in the structure of the quadratic Lyapunov function.
The results described here can be used to guarantee robust stability and performance for both
linear and nonlinear systems.

4.1 Positive Real Theory and Structured Lyapunov Functions

As a first step in developing a phase robustness theory, we shall demonstrate a link between
phase properties and the structure of the Lyapunov function. Here we are considering Lyapunov
functions of the form

V(z) =z Pz (1)

where P is a positive definite matrix. We shall call V' (z) a structured Lyapunov function if P has

internal structure. For example, P may be of the form

P, 0
P
P= .. , (2)
o P
where each diagonal block is also positive definite. We may, for example, also require that some of
the diagonal blocks be repeated. Structured Lyapunov equations have been studied in

S. Boyd and Q. Yang, “Structured and Simultaneous Lyapunov Functions for Systems Stability
Problems,” Int. J. Contr. Vol. 49, pp. 2215-2240, 1990.

Now let us consider a simple case of robustness due to phase. Consider the plant

z = Az + Bu, (3)
y =Cz, (4)
Haeris Corp. 4-1 December 1990




with compensator

£, = A.Z + B.y, (5)
u=-C,z.. (6)

Now assume that the plant is positive real and that the compensator is strictly positive real. By
the Kalman-Yacubovitch (positive real) lemma there exist matrices L, L., P, and P; such that

0=ATP+PA+LLT, (N
PB=CT, (8)
0=ATP,+P.A. +L.LT, (9)
P,B,=CT. (10)

It is easy to see intuitively why the closed-loop system

(11)

is asymptotically stable, namely, because the phase shift of the loop transfer function (note the
sign convention in (8)) is less than 180°. To see this from a Lyapunov function perspective, let P

satisfy

i=ds A2 RO
i A

B.C A,

0=ATP+ PA+R, (12)
where
s | Bn Ry
B= [R'{, R, ] (13)
is nonnegative definite. Expanding (12) with
. P, Py
P= (14)
PL B
yields
0= ATP, + PLA+ (B.C)*P}, - P;aB.C + Ry, (15)
0= ATPu + PiaA. + (B¢C)TP2 — P1BC, 4+ Ry3, (16)
0= ATP; + P,A, - (BC,)TP;; - PLBC. + R;. (17)
If we set
Ry=LLT, R3=0, Ry=L.LT (18)
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then (15)-(17) are satisfied by
Pi=P, P;3=0, ,=P.. (19)
To see that (16) is satisfied note that (8) and (10) imply
(B.C)*P; - P,BC, = (B.C)TP, - PBC.
=CTBTP, - PBC,

(20)
=CTcY -Cc%c,
=0.
Hence the Kalman-Yacubovitch conditions yield
=_|P O

which shows that the Lyapunov function for the system “inherits” the Lyapunov function of the

plant and compensator.

To contrast this situation with Ho, theory, suppose R;3 = 0 but that (B.C)TP; — P,BC, # 0.
Then P;3 can be suppressed by letting

I Bell, ICall << 1 (22)

max Re A(4,) << 0. (23)

However, (22) and (23) correspond to small gain for the feedback compensator. The phase result,
however, does not require either (22) or (23). Thus we have shown that the Lyapunov function
guaranteeing stability of this feedback interconnection has a particular internal structure. Since
the stability is due to the phase properties of the plant and compensator, we can thus regard the
Lyapunov structure as a manifestation of the phase aspects.

4.2 2-Bound Theory and Structured Covariances

Linear stochastic control theory is based on the second-moment statistic of the state variables.

Letting Q denote the state covariance, in the steady state Q is given by the Lyapunov equation
0=AQ+QAT +V. (1)

Suppose now that A is uncertain, that is, A is replaced by 4 + AA, where AA € U, a given
uncertainty set. Then (1) becomes

0=(A+A8A4)Qas +Qan(4+A4)T +V. )
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To address (2) we introduce the notion of an £2-bound which is a matrix function satisfying
AAQ +QAAT < n(Q), forallQ >0, AAcU. (3)
That is, 12(Q) bounds the uncertain terms in (2). We now consider the modified Lyapuﬁov equation
0=A4Q+QAT +0(Q)+V. (4)
It is now easy to show that if (4) has a solution, then

Qaa <£Q, forall AAe U. (5)

The choice of 2-bound will depend of course upon the uncertainty set . However, for a given
set U, there may be many f2-bounds, and a “best” bound need not exist (they are only partially
ordered). Two {2-bounds that are convenient to work with are the linear bound

2(Q)=aQ+a" ! AQAT (8)
=1
and guadratic bound
2(Q)=D+QEQ. M

By choosing a special quadratic bound, namely,
n7(Q) =+7?QCc™cq (8)
then (4) enforces an Ho, norm bound (see [1.29]).

The problem with utilizing bounds such as (6) or (7) is that they may be extremely conservative.
One reason these bounds are conservative is that (3) must be satisfied for all Q > 0 whether or
not Q is the actual solution to (4). Moreover, these bounds may be conservative if the modeling
uncertainty is large in magnitude but has bounded phase. Our approach to phase robustness theory
was motivated by the stochastic theory developed in [II.1-I1.12]. Using a multiplicative noise model
with Stratonovich interpretation, Hyland proposed the f2-operator

r

Q) =Y [342Q + A:QAT + 1QA?T), (9)

=1
where, for a structural model in modal coordinates, each matrix A; is a skew-symmetric matrix

whose structure captures the effect of an uncertain modal frequency. A drawback of (9), however,

Harris Corp. 44 December 1990




‘fyurejraoun xajdwiod ‘parnjonsisun pue

suorjpun} aounded] painjonijsun o} pajeal st ‘A109y) °H 10 ‘synsal ured-[ewg ‘7-Z'y andryg

Aureusoun
xa|dwo9) ‘painjoniisun

punog “H
WSJodY | uren) |fews

suoioun4 AoundeAT
olelpend




‘Aqurejasoun panfea-{eas ‘a1njoniys 0y pajejal

A[92211p st pue suoljdunj acunder] PaInjonis ut pajsajlusul sy uoljeurIojul aseyd ‘z-Z°F aandy g

Aureuaoun 181aweled
[eay ‘painioniis

uonewIoju| aseyd

uonoun4
aoundeA painyonig

\




is that £3(Q) is sndefinite. Thus, in this case the modified Lyapunov equation (4) does not provide

a bound for Qa4 and thus does not guarantee stability by means of standard techniques.

In summary, we note that there is an intricate interplay between phase information, real pa-
rameter uncertainty, and Lyapunov functions. The classical situation shown in Figure 4.2-1 is
thus an extreme case of the more subtle situation addressed in Figure 4.2-2. Further discussion of
these issues can be found in the paper “Real Parameter Uncertainty and Phase Information in the

Robust Control of Flexible Structures,” which appears in Appendix E.
4.3 02-Bounds for Positive Real Theory

To exploit the features of positive real transfer functions, we have developed a theory of robust
controller synthesis with positive real uncertainty. The phase-bounded character of positive real
transfer functions entails far less conservatism than small gain or H,, results when addressing real

parameter uncertainty.

The results obtained thus far are detailed in the paper “Robust Stabilization with Positive
Real Uncertainty: Beyond the Small Gain Theorem,” which appears in Appendix F. This paper
develops a siate space theoiy of positive real transfer functions in terms of an algebraic Riccati
equation. This characterization is more direct than the usual KYP characterization and provides

the basis for state space controller synthesis techniques in the spirit of state space H,, theory.

More recently we have linked positive real theory with f2-bound theory by showing that robust
stability and robust H,, performance in the presence of positive real uncertainty are guaranteed by
means of an f2-bound. This connection has ramifications for nonlinear control. To see this, we re-
call that robust stability in the presence of sector-bounded nonlinearities is equivalent to a Nyquist
circle criterion, which is equivalent to a positive real condition. Thus robustness to positive real un-
certainty provides the means to guarantee stability with respect to a class of nonlinearities. Similar

observations hold for the Popov criterion which also guarantees robustness for sector nonlinearities.

Our results provide the means for going beyond existing results in two respects. First, we can
develop multivariable generalizations of the classical circle and Popov criteria using simplified {2-
bound theory. And, second, our techniques can be used for robust synthesis in addition to analysis
as addressed by standard theory.
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5.0 Optimal Nonlinear Feedback Control

The methods and results discussed in Sections 2-5 are independent of optimality considerations.
The purpose of this section is to discuss progress in developing an optimality-based control theory
involving nonlinear controllers for linear and nonlinear plants.

As pointed out in Section 2, controller synthesis need not be based upon optimality crite-
ria. For example, a controller can be constructed in accordance with a Lyapunov function to
achieve stability, energy dissipation, etc. Nevertheless, there is strong motivation for developing an
optimality-based theory.

Perhaps the prime motivations for developing an optimality-based theory is the success of
such approaches in linear control theory. The well-known linear-quadratic-Gaussian control theory
(LQG) is the major result in modern optimal multivariable feedback control theory. During the
past decade, LQG theory has been extended to address numerous practical control-design issues
such as disturbance attenuation, robustness, controller order, and pole placement (Figyre 5-1). The
resulting theory, known as Optimal Projection for Uncertain Systems (OPUS), has been extensively
developed (see the reference list in Appendix B).

The second motivation for optimal nonlinear control theory is that it can drive the controller
synthesis procedure within a class of candidate controllers. Specifically, as will be discussed later
in this section, we can view a given Lyapunov function as providing the framework for controller
synthesis by guaranteeing local or global asymptotic stability theory for a class of feedback con-
trollers. The actual controller chosen for implementation can thus be the member of this candidate
class that minimizes a specified performance function. The form of this functional is usually closely
related to the structure of the Lyapunov function. In LQG theory, for example, the Lyapunov
function is the familiar quadratic function V'(z) = zT Pz, while the gains are chosen to minimize
a performance functional of the form J = tr PV. In summary, then, Lyapunov function theory
provides the framework, while optimisation fixes the gains.

5.1 Optimal Nonlinear Feedback Control via Steady-State HIB Theory

The classical approach to optimal nonlinear control is to invoke the Maximum Principle. This
result has been successful in characterizing solutions to problems such as minimum time con-
trol. Since the Maximum Principle does not explicitly guarantee stability via a Lyapunov function
per se and does not directly lead to feedback controllers, we shall not adopt it as our principal
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approach. Nevertheless, we bear in mind that the Maximum Principle does have links with the
Hamilton-Jacobi-Bellman (HIB) approach which we shall consider and to which we now turn.

Hamilton-Jacobi-Bellman theory has its roots in the classical Hamilton-Jacobi partial differen-
tial equation as well as the dynamic programming technique of Bellman. In its most general form,
the theory involves a partial differential equation whose solution yields an optimal controller. In
recent years, this equation has attracted renewed interest with the discovery of generalized solutions
[151,152].

If, in accordance with practical motivations, we restrict our attention to time-invariant systems
on the infinite horizson with analytic data, the situation is considerably simplified. In this case the
HJB partial differential equation reduces to a purely algebraic relationship.

To summarise the ideas involved we first consider the problem of evaluating a nonquadratic cost
functional depending upon a nonlinear differential equation. It turns out that the cost functional
can be evaluated in closed form so long as the cost functional is related in a specific way to an
underlying Lyapunov function. The basis for the following development is the paper [60] by Bass
and Weber. A more detailed treatment of these results is given in the paper “Nonquadratic Cost
and Nonlinear Feedback Control® which appears in Appendix G.

For simplicity in the exposition here, we shall define all functions globally and assume that
existence and uniqueness properties of the given differential equations are satisfied.

For the following result, let f: IR™ — IR" and L: IR™ — IR. We assume f(0) = 0.

Lemma 1. Consider the system

(t) = f(z(1)), =(0) = 2o, 1)
with performance functional -
I(zo) = / L(z(t))dt. 2)
o
Assume that
' L(z) >0, z€ R*, z#0, (3)

and assume there exists a C! function V: IR™ — IR such that

V() =o, (4)
V(z) >0, zeR", z#0, (5)
L(z) = -V'(z)f(z), zeR". (8)
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Then z =0 is a globally asymptotically stable solution of (1) and, furthermore,

J(z0) = V(zo). ()

Proof. Let z(t) satisfy (1). Then

V(=(t) £ %V(z(t)) =V (2(t))f(=(2))- (8)

Hence it follows from (6) that
V(=(t)) = -L(=(t))-

Now (3) implies that
V(z(t)) <0, z(t)#0.

Since V(z) > 0, z # 0, it follows that V'(-) is a Lyapunov function for (1) and that z(t) — O as
t — oo. Thus proves global asymptotic stability of the solution z = 0. Now (8) implies that

V) - Vieo) = [ Vel stele)es
=- fo * L{z(e))de.
Letting ¢t — oo and noting V' (z(t)) — 0, it follows that
Vo)== [ Lale)at,

or, equivalently,
V(zo) = J(zo). O

The main feature of Lemma 1 is the role played by the Lyapunov function V'(z) in guaranteeing
stability and for evaluating the functional J(z,). It can be recognized that V(z) is the cost-to-go
function in dynamic programming.

Let us illustrate Lemma 1 with a familiar example. Consider the linear system

z= Az, z(0) = z,, 9)
with cost functional
oo
J(zo) =/ zT Rz dt, (10)
1]
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where R € IR"*" is positive-definite. If A is stable then there exists a positive definite matrix
P € IR™*" satisfying
0=ATP+PA+R (11)
Now define
V(z) = 2T Pz, (12)
which satisfies (4) and (5). Furthermore, with f(z) = Az and L(z) = zT Rz it follows that
V'(z)f(z) = 22" PAz
=zT(ATP + PA)z
= -2 Rz
=-L(z)
which verifies (6). Hence
J(zo) = z3 Pzo,
which is a familiar result from linear-quadratic theory.

To deal with more general situations, the following lemma, which appears in [60}, will be useful.

Lemma 2. Let A € IR"*" be asymptotically stable and let A: IR® — IR be a nonnegative-
definite homogeneous p-form (p even). Then there exists a nonnegative-definite homogeneous p-form
g: IR™ — IR such that

¢'(z)Az + h(z) =0, ze€IR". (13)

In the quadratic case (13) yields the familiar result. To see this let h(z) = zT Rz and g(z) =
zT Pz. Then (13) becomes
2eTPAz+z" Rz =0,

or

zT(ATP+ PA+ R)z =0,

which is satisfied by P given by (11). Now consider the nonquadratic cost functional

J(zo) = /o 2T Rz + h(z)]dt, (14)
where ,
h(z) = hau(z) (15)
v=1
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and,forv=1,...,7, hs,: IR® — IR is a nonnegative-definite homogeneous 2v-form. We continue
to assume that z(t) satisfies (9), where A is stable. Now, let g3,: IR® — IR be the nonnegative-
definite homogeneous 2v-form satisfying

93, (z)Az + Ry (z) =0, z€R"?, v=1,...,r, (16)

and define )
9(z) = g0.(2)- (17)

=1

Note that (15)—(17) imply
¢'(z)Az + h(z) =0, z€R". (18)

Furthermore, define the positive-definite function
V(z) = 2T Pz + ¢(z), (19)

where P satisfies (11). Now, to verify (6) we note that
Vi(2)f(2) = 227 P + ¢'(2)) Az

=zT(ATP+ PA)z + Z 93, (z)Az

v=1

= —QTRZ - 2 hz,,(z)
v=1

= - L(=z).

Hence for J(z,) given by (14) we obtain
J(zo0) = V(20) = 23 Pzo + 9(z0). (20)
Next consider in place of (9) the case in which the plant is nonlinear, for example,
= Az +o(z), z(0)= zo, (21)

where ¢(0) = 0 and we continue to assume that A is stable. Again, let g: IR™ — IR be given by
(16) and (17) and define V' (z) by means of (19). It remains only to verify (6). Hence
V'(2)f(z) = 22T P + ¢'(2)][Az + o(2)]
=zT(ATP + PA)z + ¢'(z)Az + [22zT P + ¢'(z)]o(2)
= —[zT Rz + h(z)] + [22T P + ¢'(z)]o(2)
= ~-{L(z) - 22" P + ¢'(z)]o(2)}.
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Hence we see that (6) is not generally satisfied. However, we can salvage the situation be considering

an auxiliary cost functional
Heo) 2 [ Liatoar (22)
where
L(z) £ L(z) - [22TP + ¢'(z)]o(2). (23)

With this modification (3) must be satisfied with L(z) replaced by L(z), that is,
L(z) > [2zTP + ¢'(z)]o(z) (24)

In the special case that
22T P + ¢'(z)]o(z) < O, (25)

it follows that (24) is automatically satisfied (if (3) is satisfied) and, furthermore,
J(z0) < J(0)- (26)
That is, the auxiliary cost is an upper bound for the original cost.

By only a slight extension of Lemma 1, we can obtain sufficient conditions for characterizing
optimal feedback controllers. Now let f: IR®XIR™ — IR", where f(0,0) = 0, let L: R"XIR™ — IR,
and define for p € R"

H(z,p,u) £ L(z,v) + p" f(z, u).

Theorem 1. Consider the controlled system

£(t) = f(=(t),u(t)), =2(0) = =o, (27)
with performance functional
J(zo,u(")) & /o * L(z(e), u(t))d. (28)
Assume that there exist a C! function V: IR® — IR and a function ¢: IR™ — IR™ such that
V(0)=0 (29)
V(z)>0, zeR", z#0, (30)
L(z,4(z)) >0, zeR", z#0, (31)
H(z,V'T(z),4(z)) =0, zeR", (32)
H(z,V'T(z),u) 20, z€R"*, ueR™. (33)
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Then with the feedback control u(-) = ¢(z(-)), the solution z = 0 of the closed-loop system is
asymptotically stable and

J(zo, #(z(-)) = V(z0). (33)

Furthermore, the feedback control u(-) = ¢(z(-)) minimizes J(zo, u(-)), that is,

I (2o, #(2()) = winJ (z0, u(-))- (34)

Proof. Global asymptotic stability and result (33) follow directly from Lemma 1. We need
only note that (31) can be written as

L(z, ¢(z)) = -V (2)f(=,4(z)), z€R",

which corresponds to (6). It remains only to prove (34) using condition (32). For arbitrary u(t)
and for z(t) satisfying (15) we have

V(2(t) = V*(=(2)) £(2(2), u(t))
or
0 = —V(2(t) + V" (=(t)f(=(t), u(t))-

Hence

L(=(t), w(t)) = ~V'(2(t) + L(z(e), u(t) + V' (=(2) (=(2), u(2)
= ~V(2(t) + H(z(), V"™ (=(t)), u(t)).
Now using (32) and (33) we obtain
Iao, () = [ [V () + Blae),V " (o(0), u(t
= - Jim V() + Vo) + [ H(a),V (=), u()at
=V (z0) + /0 ~ H(z(t), V'™ (a(t), u(t))dt
> V(zo)
= J(30s¢(z(')))
which yields (33). O

The principal feature of Theorem 1 is that the optimal control law u = ¢(z) is a feedback
controller. Furthermore, this control is optimal independently of the initial condition zg.
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Now let us illustrate Theorem 1 with some examples. We begin with the simplest case, namely,

the linear quadratic regulator. Herce consider the controlled system
2= Az+ Bu, z(0) = z,,
with performance functional
o0
J(zo,u(*)) = / [T Ryz + uT Ryuldt,
0
where z € IR",u € IR™ and where R; and Rj are positive definite. Define the feedback law
#(z) = ~R; BT Pz,

where P satisfies
0=ATP+ PA+ R, - PSP,

where S = BR;*BT. With u = ¢(z), the closed-loop system (36) becomes

&= Az, z(0)= zo,
where A £ A — SP, while (37) and (39) can be written as
Ieo#le) = [ o heat
0

and
0=ATP+PA+R,

(36)

(37)

(38)

(39)

(40)

(41)

(42)

where R £ R, + PSP. Thus the closed-loop system (40) with cost (41) has exactly the form of
the example considered in (9)-(12). It remains only to show that u = ¢(z) is the optimal control,

which will be the case if (33) is satisfied. To show this, note that
H(z,V'%(z),u) = 2T Riz + uTRyu + 2:T P(Az + Bu)
=2 TRiz+uTRyu+ 2T (ATP + PA)z + 2z:TPBu
=zTPSPz+ 22" PBu+uTRyu
= [R7'BTPz + u|TRy[R; 1 BT Pz + u]

> 0.

Note that it is now easy confirm (32) by setting u = ¢(z) = —R; ' BT Pz.
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We now apply Theorem 1 to an optimal control problem involving a nonquadratic cost. Hence

consider the linear system (35) with cost
- -]
J(zo,u()) = f [T Rsz + h(z) + uT Ryuldt, (43)
0
where h(z) is given by (15). We shall consider a control law of the form
u=¢(z) = ¢.(z) + #n1(2), ' (44)

where ¢1(z) and ¢ (z) are linear and nonlinear, respectively. Let ¢1(z) agree with the linear-
quadratic solution, that is,

¢1(z) £ —R;'BT Pz, | (45)
where P satisfies
0=ATP+ PA+ R, - PSP. (46)
Recall that (46) can be written as
0=ATP+ PA+R, (47)

where A2 A— SP and R2 R, + PSP.
For the nonlinear control ¢xr(z) let g(z) be given by (17) where g3, (z) satisfies
93, (2)Az + hay(z), z€R", v=1,...,r, (48)
which is the same as (16) with A replaced by A. Now define
én(@) = ~3 R B¢ (2) (49)

and the Lyapunov function
V(z) = 2T Pz + g(z). (50)

Next note that for L(z,u) as in (43) we have

L(z,¢(z)) = 2" Riz + h(z) + ¢ (z) Rag(2)

- 51
=z Rz + h(z) + zTPS¢'T(z) + %g'(z)Sg'T(z). (&1)
Furthermore, with u = ¢(z) the system (36) becomes
t = Az + Bénp(z), z(0) = zo, (52)
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-

or
i=Az-28¢"(), =(0) = 2. (53)
Returning to Theorem 1, it is clear that (29)-(31) are satisfied. However, note that
V() (2, $(2)) = (227 P+ ¢'(2)][ Az ~ 359" ()]
= £T(ATP + PA)z + ¢'(z) Az - zTPSg"" () - %g'(z)Sg'T(z)
= ~[c" e + M) + =7PSg""(2) + 30'(2)50"" (2)]

= - [L(z,$()) + 39'()55 (@),

so that
H(z,V ™ 4(z),4(2)) = - 9'(=)S9™ (=), (54)
which shows that (32) is not satisfied. However, if we define
£z 9) 2 L(z,9) + £9'(2)59™ (=) (55)
then the auxiliary cost
Hao, ) 2 [ La(0),ulea (56)
satisfies
J(zo, u(*)) < J(zo,u(-)). (57)
Finally, be defining
H(z,V' ™ (2),4) £ L(z,u) + VT (2)f(z,u), (58)
it can be shown that
H(z,V""(z),u) = [u - (2)]" Ra[u — ¢(=)]. (59)

Hence (33) holds with H(-) replaced by H(-). Consequently,
J(zo,(2(-)) = V(o)
= 23 Pz + 9(zo) (60)

= T(;?f(zo,u(-)).

We next consider a special case of the above nonquadratic problem that leads to considerable
simplification. This particular problem was considered in [63]. Suppose we require that V' (z) be of
the form

V(z)=z"Pz+ -;—(:::TM:::)2 (61)
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so that g(z) = 1(2T Mz)? where P satisfies (39) and M satisfies
0=(A-SP)TM + M(A- SP)+ R, + MSM. (62)
Then ¢(z) has the form
#(z) = —-R;'BTPz - R;' BT (zTMz)Mz. (3)
Next we assume that A(z) is given by
h(z) = (zTMz)zT (R, + MSM)z. (64)

With these definitions we note that
¢'(2)Az = (2T Mz)2z" M Az
= (zTMz)zT(A™M + MA)z
= (zTMz)zT(R, + MSM)z
= h(2),

which verifies (48). Finally, define
L(z,u) = 2T Ryz + h(z). (65)

Following the previous development, we see that ¢(z) given by (62) minimizes J(zo, u(-)) defined
by (55), where

L(z,u) = zTRyz + (T Mz)z" (R, + MSM)z + (" Mz)?2T MSMz + u” Ru. (e6)

Thus, be minimizing a sixth-order cost functional, the optimal control is a cubic feedback charac-
terized by a pair of Riccati equations. The cost functional is somewhat artificial since it depends

upon the solution of one of the Riccati equations.

We have thus shown that the problem considered by Speyer in [63] is a special case of the
optimal nonquadratic cost problem addressed by Bass and Weber in [60]. Actually, however, the
formulation of Speyer was a stochastic control problem based upon results of Wonham [153]. This

formulation involves systems of the form

z = Az + Bu+ D,w, (67)
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where D;w denotes additive white noise disturbances. (Speyer also considered multiplicative noise
in [63] as well.) These disturbances lead to a modification of (48) of the form

0= ATP+ PA+ R, - PSP + (tr MV))M + 2MV3 M, (e8)

Now note that (62) and (68) now constitute a pair of coupled Riccati equations.

Having reviewed the elements of a deterministic HIB theory as originated by Bass and Weber,
out next goal is to develop a corresponding theory of stochastic control. Such a theory can be used
for disturbance rejection for persistent disturbances. Our principal goal, however, is to generalige
HJB theory to permit the design of fixed-structure controllers that operate on the available, possibly
noisy, measurements. To our knowledge, no such theory currently exists, while progress in this

direction is crucial for practical application of nonlinear control laws.
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Abstract

It is well known from thermodynamics that energy flows from hot objects to cold
objects. It is less well known, however, that a similar phenomenon occurs in coupled
mechanical systems with modal energy playing the role of temperature. Energy flow among
coupled modes is the subject of Statistical Energy Analysis (SEA). Originally motivated by
problems in acoustics involving numerous vibrational modes, SEA is based upon equations
governing energy flow among individual modes or sets of modes. Such energy flow equations
can be quite efficient in modeling the response of lightly damped structures. This paper
has two goals. First, we derive a generalized formulation of power flow which allows
arbitrary coupling of arbstrary strength. Previous theoretical results were limited to either
identical couplings or weak interactions. These new results utilize Kronecker matrix algebra
to derive an energy flow equation involving the diagonal elements of the solution to a
Lyapunov equation. Analysis of the resulting equations, based upon M-matrix theory,
yields generalized energy balance relations in the case of weak but arbitrary (possibly
nonconservative) couplings.
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expectation

real field, complex field

r X s real, complex matrices
IR"*!, €"*! (column vectors)
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v-1

(k, £)-element of A € C"**

real, imaginary part of A € C"**

complex conjugate, transpose, complex
conjugate transpose of A € C"™**

diagonal, off-diagonal part of A € C"*" (see Section 2)
See Appendix B
A € IR"™** is nonnegative (each entry of A is nonnegative)




1. Introduction

We are concerned with efficient methods for evaluating the steady-state statistical response of
large-scale linear. systems composed of many interconnected, high-dimensional subsystems. This
problem arises from applications involving acoustical response, acoustical/structural interaction,
high frequency vibration of mechanical systems, and dynamics and control of large space struc-
tures [1-25]. To illustrate the problem, suppose that each subsystem is well known and precisely
characterized so that its eigenbasis is known. Then, assuming for convenience a semisimple eigen-

structure, the kth subsystem considered in isolation is of the form
Zx=AxZx+wi, k=1,...,r, (1.1)

where, for k=1,...,r,

z, €C™, A2 disg (M), A €C,

d
i=1,...,m
and wy is a white noise process with Hermitian nonnegative-definite intensity Vj € C"**"*, When
the subsystems are interconnected, couplings are introduced among the subsystems in the form of
perturbations to the individual subsystems. The subsystem dynamics in the interconnected case
are given by ,

T = Akzg+gkkzk+29uz¢+wk, k=1,...,r (1.2)
tmi
Lotk

The matrix gx, € C"**"¢, k # {, represents the effect of the £th subsystem on z;, while the
matrix gigx € C™* X"+ represents an effective shift of Ax due to the interconnections. Our goal is to

determine the steady-state second-moment response of the interconnected systems.

In the case of a large flexible structure consisting of several interconnected substructures,
(1.1) represents the kth substructure, while the coupling terms in (1.2) arise from the mechani-
cal interconnections among the substructures. Alternatively, in the case of acoustical/structural
interaction, one wishes to predict the acoustical response of several acoustical spaces separated
by elastic partitions (such as walls). Equation (1.1) then represents the modal dynamics of each
acoustical chamber, while the coupling terms in (1.2) represent the dynamic couplings introduced
by the _lastic partitions. The power flow concept also has close connections with thermodynamics

and circuit theory [26-34].
The problem posed by (1.2) is subsumed in the linear system model

t=(~v+iNz+ (H+G)z+ w, (1.3)
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where

zeC™,

vs diag (1), wmelR, wn>0 k=1,...,n,
k=1,...,n

N2 diag (), NKelR, k=1,...,n,
k=1,....n

HE diag (H:), Hy,e€C, k=1,...,n,
k=1,...,n

Gwe=0, k=1,...,n, GeC"*",
and w is white noise with Hermitian nonnegative-definite intensity V € C"*". The diagonal
matrix ~v + §2 € C**" wheren=3_,_, ﬁg is a concatenation of all of the uncoupled subsystems
in (1.1). The matrices H and G represent, respectively, the diagonal and off-diagonal portions of
the perturbations due to subsystem interaction. We assume that the system (1.3) is asymptotically
stable, that is, the spectrum of the matrix —v 4+ 2+ H + G is contained in the open left half plane.
To study the steady-state, mean-square response of the system (1.3), suppose y defined by

y=Cz (1.4)

is a response variable of interest, where C & [C) -+-Cpn] € €C**". Then it is well known [35] that

the steady-state mean-square value of y is given by
Jim IE{ly|*] = t[c*CqQ), (15)

where the steady-state covariance Q = lim,_, o, IE[zz*] € C™*" is determined as the Hermitian

nonnegative-definite solution to the Lyapunov equation
0=(-v+2)Q+Q(-v-2)+(H+G)Q+Q(H+G)" +V. (1.6)

Note that due to symmetry, equation (1.6) represents 4n(n + 1) scalar equations for the elements

of Q.

Since (1.6) is a well-known equation with well-established solution techniques [36-38], the
problem would appear to be solved. However, the difficulty in the application mentioned above
is that the total system dimension n may be exceeding., 'arge. For the example involving several
acoustic spaces coupled by elastic partitions, each subsystem (a modest-sized room, say) can have
millions of modes in the audio range. Thus the total dimension n can be of the order of 10% — 107
while the coefficient matrix (~v + §2 + H + G) is not necessarily either sparse or banded. Thus,

the prediction of vibration response or sound pressure levels via the solution of (1.6) can be very
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cumbersome indeed. It is thus desirable to develop more efficient methods for estimating quantities

such as IE[|y|?] which somehow circumvent the huge dimensionality of (1.6).

In this regard, many useful and important results and procedures have been developed. These
are often referred to collectively as “Statistical Energy Analysis,” or SEA [1-16]. SEA was developed
for high-dimensional, lightly damped mechanical or acoustical systems for which there are passive
mechanical energy-conservative interconnections among the subsystems. In the notation of (1.3),

(1.4), this means that there is a basis in which H + G is skew-Hermitian, that is,
Hy=j§Hy, HieR, k=1,...,n, (1.7)
G*=-G. (1.8)

In the present paper, we develop results that deal with general coupling terms. These results are

later specialized to couplings restricted by (1.7), (1.8).

The purpose of this paper is to elucidate some of the basic ideas of SEA in rigorous system-
theoretic language and to provide generalizations of certain fundamental SEA results. Before
summarizing these results, let us note that our problem formulation thus far in terms of a Lyapunov
equation as in (1.6) already represents a poini; of departure from the techniques employed in [1-16].
Motivated by the literature on large scale systems theory [39], we utilize Kronecker matrix algebra
(40,41} and M-matrix theory [39,42] as our principal mathematical tools. In an earlier paper [43] we
used similar tools to analyze the stability and performance robustness of interconnected systems.
The results of [43], which were themselves motivated by SEA, thus served as a precursor to the

SEA extensions given in the present paper.

Perhaps the most fundamental tenet of SEA is that quantities such as IE[|y|?] cah be estimated
or approximately determined solely in terms of the “modal energies”. In our notation the modal

energies translate into the real, nonnegative diagonal elements
-3 -1 . 2
Ex =Que = ‘l_.;;o IE(|zx|*] (1.9)

of the second-moment matrix Q. For example, if the system is a set of mechanical subsystems me-
chanically coupled, then E) corresponds to the kine’ic or potential energy of one of the vibrational
modes of a subsystem. In Section 2 we discuss the various conditions under which it suffices to

determine the E in order to evaluate the mean-square response of quantities of interest.

Having argued that mean-square response measures of interest can be deduced from knowledge

of the modal energies, a second central tenet of SEA is that it is possible to formulate a set of

4

. e eae




n linear equations that involve only the quantities E; and that are sufficient to determine these

quantities. Note that the diagonal elements of (1.6) give power flow relations of the form

(2Vk —2Re Hy)Ex + I, = Vik, (1.10)
\ - - (S ’ [

power dissipated power flow power input

by the kth mode from the kth mode due to external

due to damping to all other modes disturbances

due to coupling

where ITj is given by n
M 2 - " (GreQux + QeGre).

{m]
(111

Statistical Energy Analysis asserts that the quantities IT; can be evaluated as linear functions of

the E,’s alone so that a relationship holds of the form

n
I = ZPMEL, Pre€ IR, (1.11)
=1

Thus, if (1.11) holds then by using (1.10) one need only solve n linear equations for the modai
energies in place of solving the -}n(n + 1) equations corresponding to the n x n Lyapunov equa-
tion (1.6). Relation (1.11) has been demonstrated in several special cases, namely, two coupled
oscillators, n identical oscillators with identical coupling, and n nonidentical oscillators with weak
inter-modal coupling [1-6]. In Section 3, however, and without restrictions (1.7), (1.8), we use
Kronecker algebra to deduce directly from (1.6) that the modal energies E) are determined by an

energy equation of the form

(p+P)E=V, (1.12)

where

p2 diag (sk), px22v,-2Re Hy, PeR™*",

=1,...,n
i Vi Ey Qu
val: &) : |, E2 214
Vn Vnn En an

By comparirg (1.10) to (1.12) it can be seen that the expression (1.11) for 1T, is precisely the kth
element of PE. So long as the overall system is asymptotically stable, relations of the form (1.10)

and (1.11) hold regardless of the number of modes or the magnitude of the couplings.

Further conditions on u + P that arise in the cases of two oscillators, n identical oscillators

with identical coupling, or nonidentical oscillators with weak coupling lead to an energy difference
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power flow proportionality as in [11,12]. Specifically, suppose that

Pre <0, k#¢ kt=1,... ,n, (1.13)

and n
Pea=) 1Pl k=1,..,n. (1.14)

L]

Lvhk

Then, defining oke = | Pre|, k # £, so that oy, > 0, it follows from (1.11) that

n
M=) orEx— Ey). : (1.15)

=1

tah
In other words, power flow from the kth mode to all other modes is the sum of the individual
power flows from mode k to mode £, which are proportional to the energy differences Ex — E,.
Note that power always flows from more energetic modes to less energetic modes (because of the

nonnegativity of the coefficients ox¢). Substituting (1.15) into {(1.12) yields

BB + Edkz(Ek - E)) =V, (1.16)
=]

Lok
which is an energy balance relation. Equations {1.10) and (1.16), which govern energy exchange
among coupled oscillators, are completely analogous to the equations of thermal transfer with the

modal energies playing the role of temperatures.

In physical situations involving nonconservative couplings, we show that although (1.14) no
longer holds, it is still possible in the case of weak couplings to obtain a generalized power flow
proportionality. In this case there exists a set of positive scale factors Dy >0, k=1,...,n,such

that, with £ 2 i};Ek, the energy difference power flow proportionality is given by

”

M=) 6wl En - Ey), (1.17)
tm]
Lk

where &5y = Dyoxe. Note that (1.17) is not merely a rewriting of (1.15) since in general Dy # D,.
With (1.17), the energy equation (1.12) assumes the form of a generalized energy balance relation
given by

n

peEr + Z&kt(Ek - Ey) =V, (1.18)
=)
(2.1

where k£ = 1,...,n. That is, there is a set of re-scaled energies such that (1.12) looks like the

equations of thermal transfer. This result, given in Section 4, generalizes (1.15), (1.16) to the case
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of weak but otherwise arbitrary (not necessarily conservative) modal couplings. These results are

obtained by means of M-matrix theory [39,42].

While deriving energy difference power flow proportionality relations, we show that the explicit
expressions given for P in the SEA literature are actually first-term approximations in a series
expansion for P. Indeed, it turns out that P, which is given by a complicated expression involving
v,02, H,and G, agrees with the customary SEA expressions for “small” G. This in done by obtaining
explicit expressions for the terms of a series expansion of P in ascending powers of the matrix

elements of G.

Since the modal energies satisfy equations analogous to those of thermal transfer, it might be
expected that if the coupling coefficients G, are large compared to the modal dampings, then the

energies should be approximately equal, that is,
Ey~Ey;~..-~E,. (1.19)

Section 7 provides a formulation and proof of this “energy equipartitioning” phenomenon.

At this point, it is evident that this paper deals only with certain deterministic aspects of SEA.
Rigorous exploration and extension of the “Statistical” aspect of Statistical Energy Analysis, which
addresses the possibility of uncertainties in the system parameters and coupling coefficients, will
form the subject of a future paper. Other extensions of the present paper are briefly mentioned in

Section 8.




2. Characterization of System Response in Terms of the Modal Energies

Here we examine the conditions under which it suffices to compute only the modal energies
(1.9) in order to estimate response quantities such as lim;_. IE[| y|?]. To carry out the necessary
calculations, we shall utilize a somewhat unconventional notation for the diagonal and off-diagonal

portions of a matrix. Specifically, for M € C™*" define

{M}2 diag (Mw), (M)=M-{M}.

For convenience, several identities involving these definiticns are given in Appendix A.

Next we define the matrix

AZ—v+iQ+H

and note that
A= diag (Ay), (2.1)

k=1,...,n

where

A 2 -y + 2% + Hi.

Then the Lyapunov equation (1.6) becomes
0=AQ+QA'"+GQ+QG" +V. (2.2)

Using the identities of Appendix A to decompose the Lyapunov equation (1.6) into its diagonal
and off-diagonal parts, we obtain. (noting A = {4} and G = (G))

0= A{Q} +{Q}4" +{G(@) + (@)G"} + (v}, (2.3)
0= A@Q) + (@)A" + (G(@) +(Q)G") + G{Q} + (Q)C" + (V), (2.4

while (1.5) becomes
Jim E(|y|*] = tr{C"CHQ} + z[(C"C)Q)]. (2.5)

The underlined terms in (2.4) and (2.5) are zer> when V and C*C are diagonal. Furthermore, they

can be neglected when the following conditions hold either separately or in combination:

i) The term (V) in (2.4) can be neglected when the modal excitation forces are uncorrelated, in
which case (V) ~ 0. This occurs when excitations are spatially distributed with very short

correlation length.




1) The underlined terms in (2.4) and (2.5) are negligible when vy, v, <<| 2% — 2, |, that is, the

case of large modal frequency separation relative to modal damping.

#3) The l;nderlined terms in (2.4) and (2.5) are negligible in the case of a distributed structural
system with very high modal density wherein, for fixed k and for £ = 1,...,n, the real and
imaginary parts of Gy, G, and Vi, have many sign reversals for modes within any narrow
frequency band. These sign reversals essentially cancel out the contributions of (Q) in (2.5)
and the effect of (V') on {Q} in (2.4) (see [13] for details).

When conditions i)-4ii) are satisfied either separately or in combination, we have the approxi-

mate equations

0= A{Q}+{Q}4’ +{G(Q) +(@)G"'} +{V}, (2.6)
0= A(Q) +(@)4" +(G(@) +(Q)G") + G{Q} + {Q)¢", (27)
Jim E[ly[* = #l{C*CHQY. (28)

These equations are exact when V and C*C are diagonal; they are good approximations under

conditions s)—4it). Note that these approximations have no impact on stability analysis.

The salient feature of (2.8) is that the response quantity involving y can be expressed in terms
of the diagonal elements of Q. As mentioned in Section 1, the diagonal elemenf:s Qxx have the
physical significance of either kinetic or potential energies of the vibrational modes. Although we
need only calculate the n diagonal elements of Q (the “system modal energies”) to evaluate (2.8),
it is still apparently necessary to solve an n x n Lyapunov equation to obtain all of Q. In fact,
however, we now proceed to use Kronecker matrix algebra to eliminate the off-diagonal part (Q)
from (2.6) and (2.7), thereby producing a system of only n equations determining {Q}, rather than
the 4n(n + 1) equations that characterize all of Q.




3. Determination of the Modal Energy Equations

Here we show that the decomposed Lyapunov equation (2.6), (2.7) can be reduced to a system
of n equations involving only the modal energies E}j, that is, the diagonal elements of Q. To do
this we employ the Kronecker matrix algebra, the basic definitions and identities of which are
summarized in Appendix B. Note that the basic operators are the vec operator, which stacks the
columns of a matrix into a vector, and the vecd operator, which stacks only the diagonal entries of a
square matrix into a vector. Appendix B reviews the definition of the Kronecker product and sum
along with identities (B.1) through (B.10), which are well known [40,41]. The remaining identities
(B.11)~(B.18) are new and their proof is left to the reader. The matrices £ and £, are diagonal
projection matrices that allow us to separate the entries of vec M corresponding to the diagonal

and off-diagonal elements of a square matrix M (see (B.13) and (B.14)). We can now define

E FQu
E2 Ez L vecd Q= Q:" , (3.1)
E, [ Qun
i [ Vi1
VivedV = ‘? & V?z ’ (3:2)
Val LVoa

which are real, nonnegative vectors since Q and V' are Hermitian nonnegative-definite matrices.

Furthermore, define
= diag (mx), wk £ 2u) - 2Re Hy. . (3.3)

=1,...,n

and note that u = —(4 + A) = —2Re A.

n

Theorem 3.1. Assume that A + G is asymptotically stable, let @ € C™*" be the unique
Hermitian nonnegative-definite solution to the Lyapunov equation (1.6), and define the nonnegative

vectors E,V € IR" by (3.1), (3.2). f A® A+ £, (G ® G)£, is nonsingular, then E and V satisfy
(s+P)E=V, (3.4)

where u € IR"*" is defined by (3.3) and P € IR"*" is defined by
PEET(COG)ELIABA+EL(GOBG)EL EL(GaG). (3.5)

Furthermore, 4 + P is nonsingular and its inverse (4 + P)~! is a nonnegative matrix. Finally,

n

Jim IE{ly*] = :.2:1 |Cx|? Ek. (3.6)
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Proof. Applying the vec operator to (2.6) and using (B.7), (B.13), and (B.16) yields

0= (A ® A)vec{Q} + vec{G(Q) + (Q)G"} + vec{V}

= (A® A)évecd Q + £(C @ G)vec(Q) + vecd V. &7

Next applying the vec operator to (2.7) and using (B.7), (B.14), (B.15), (B.168), and £, (A® A) =
(A 3] A)E.L: Yields

0 = (A & A)vec(Q) + vec(G(Q) + (Q)G*) + (G ® G)vec{Q}
= (A® A)vec(Q) + £, (G ® G)ELvec(Q) + (G @ G)évecd Q (3.8)
=[ADA+£EL(CDG)ELvec(Q) + £ (G ® G)évecd Q.

Since A® A + £1(G ® G)£ .. is assumed to be nonsingular, (3.8) and (B.14) imply

vec(Q) = —EJ_[A.@ A+é (Go G)C‘L]-lﬁl(é 5] G)fvecd Q. (3.9)

Substituting (3.9) into (3.7) yields

0={(A0 A)f - E(GDG)EL[AD® A+ EL(COG)EL] ™ EL(G © G)E]vecd Q + & vecd V. (3.10)

Next note that
ET(AQAE =A+A=—p. (3.11)
Multiplying (3.10) by £T and using (3.11), (B.17), and (B.18) yields
0=-[u+éT(COG)LIABA+EL(GOGC)EL (G D G)E]vecd Q + vecd V,
or, using (3.5),
(s + P)vecd @ = vecd V,

which is (3.4).

To show that the n x n matrix P defined by (3.5) is real, take the complex conjugate of (3.5)
and use (B.8) and (B.10)~(B.12) to obtain

P=(T(CaC), [A0A+ £ (GG L (CaG)E
=éTUGOGWELU(AD AN + EL(GBGWELELUC @ G)UE
=ET(GCOC)L[ABA+EL(GDG)EL L (GaG)E
=p.
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Next, to show that u + P is nonsingular, note that since V € IR" is an arbitrary nonnegative
vector, the rank of u + P is n. Thus x + P is nonsingular. Furthermore, it can be seen that if V
is the ith column of I,, then the nonnegative solution E of (3.4) is the ith column of (u + P)~1.
Hence (u + P)~! is a nonnegative matrix. Finally, (3.6) follows from (2.8). O

Remark 3.1. Suppose that G is symmetric, that is, G = GT, but not necessarily real. Then
using (B.3) it is easy to show that P (which is real) is also symmetric. Hence in this case u + P

and (s + P)~! are both real symmetric matrices.
As a separate result we state the following converse of Theorem 3.1.

Proposition 3.1. Assume that A® A+ &, (FOG)E, is nonsingular, let V', 4, and P be defined

E,
by (3-2), (3.3), and (3.5), and suppose there exists a nonnegative solution E = [ : } € IR” to
E,
equation (3.4). Then the matrix Q € C"*" defined by 3
QL diag (B)+vec ' ([A@A+EL(GBG)EL]EL(GOG)EE), (3.12)

i=1,...,n

is Hermitian and satisfies (1.6). If, in addition, Vx >0, k =1,...,n, and Q is positive definite,
then A + G is asymptotically stable.

Proof. The fact that Q given by (3.12) satisfies (1.6) follows by reversing the algebraic steps
leading to (3.4). To show that Q is Hermitian, note that using (B.8)-(B.10) we have

Q' = diag (E,') + [vec'l(C_L[A$ A+ E.L(G QG-)EJ_]-lfJ_(G @ d)fE)]T

s=1,...,n
= '_dliag (Bsj+ [vee ™ (EL[U(A® AU + ELU(GDG)UEL "L UGS G)UfE)]T
= dieg (E)+ [vec}(ELU[A@ A+ £L(C@G)EL (G G)EE)]T
= dliag (B;) +vec (L [AD A+ EL(CDG)EL]"1EL(GDG)EE)
=Q.

Finally, the stability of A + G follows from standard Lyapunov theory [44, Lemma 12.2]. O

Theorem 3.1 and Proposition 3.1 show that for the purpose of determining the diagonal entries
of Q, that is, the modal energies E,,..., E,, equation (3.4) is equivalent to equations (2.6) and
(2.7). This verifies the tenet of Statistical Energy Analysis that there exists a system of n linear

equations that determine the modal energies alone. Moreover, comparing the kth equation in (3.4)
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with the power balance relation (1.10), we now see that /Ty, the power flow from the kth mode to

all other modes due to coupling, is given by

M=) PuEe, (3.13)
=1

where ? € IR is the (k,¢) element of P. Thus the expression (1.11) is also verified. In the next
section we further explore the structure of ITx and P to derive a generalization of the energy

difference power flow proportionality (1.15) for weak but arbitrary coupling matrices G.
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4. Analysis of the Energy Equation: Energy Difference Power Flow
Proportionality

In this section we analyze the energy equation (1.12) to determine conditions under which an
energy difference power flow proportionality holds. Under the assumption that the off-diagonal
slements of P are nonpositive, we obtain a generalized power flow proportionality involving scaled
model energies. In Section 5 we then show that this result holds for weak, but otherwise arbitrary,
couplings. Specializing further in Section 6 to the conservative case involving skew-Hermitian

couplings, we obtain a power flow proportionality involving the actual (unscaled) modal energies.

The development requires several definitions and results from matrix theory [39,42]. A matrix
M € IR**" is called a Z-matrix if Mk < 0, k# £ k£ =1,...,n. Note that a Z-matrix
M € IR™*™ can always be placed in the form

M=al-N, (4.1)

wherea >0and N >>0, N €IR™*". If (4.1) can be satisfied with a > p(V) (p denotes spectral
radius), then M is called an M-matriz. K, furthermore, a > p(N), then, since det M # 0, M is
a nonsingular M-matrix. There are numerous (at least 50) equivalent conditions under which a
Z-matrix is a nonsingular M-matrix [42]. We now summarize those conditions that will be used

here. We shall call B € IR®*" diagonally dominant if

n
Bkk>Z|Bkt|, k=1,...,n (4.2)
pery

Lk

Lemma 4.1. Let M € IR™*" be a Z-matrix. Then the following are equivalent:
i) M is a nonsingular M-matrix,
t) M is nonsingular and M~ >> 0,
#11) the real part of each eigenvalue of M is positive,
1v) there exists positive diagonai D € IR"*" such that M D is diagonally dominant.
Proof. See conditions (N3g), (G20), and (M3s) on pages 134-138 of [42]. O

Returning to the energy equation (1.12), we focus on the coefficient matrix u + P. The crucial

condition that u+ P is a Z-matrix will be shown later for the case of weak, but otherwise arbitrary,
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couplings. First we recall from Theorem 3.1 that, under the assumptions of that Theorem, u + P
is nonsingular and (z + P)~! 2> 0. Thus, condition #) of Lemma 4.1 with M = u + P can be

invoked to yield conditions 3), i) and sv). -

Proposition 4.1. Suppose that the assump‘tions of Theorem 3.1 are satisfied and assume that

P is a Z-matrix. Then
i) p+ P is a nonsingular M-matrix,
1) the real part of each eigenvalue of u + P is positive,

iv) there exists positive scalars D,,..., D, such that

Di(pr + Pri) > Z Del|Prel, k=1,...,n. (4.3)

i
Proof. First note that since u is a diagonal matrix, u + P is a Z-matrix if and only if P is
a Z-matrix. Since, by Theorem 3.1, (4 + P)~! >> 0, condition #) of Lemma 4.1 is satisfied with
M = p+ P. Hence conditions i), iii), and iv) of Lemma 4.1 are also satisfied. Now it need only be
noted that (4.3) is equivalent to (4.2) with B = (u+ P)D and D = diags~;,. .(Ds). O

Remark 4.1. Suppose G is symmetric but not necessarily real. Then by Remark 3.1 P is
symmetric. Since u + P is also symmetric, 4 + P bas only real eigenvalues. It thus follows from
condition ) of Proposition 4.1 that & + P has only real positive eigenvalues. Hence in this case

p + P is a symmetric positive-definite matrix.

Corollary 4.1. Suppose that the assumptions of Theorem 3.1 are satisfied and assume that
P is a Z-matrix. Then there exist positive scalars i >0, k =1,...,n, and nonnegative scalars
0,20, k#¢L k/t=1,...,n,such that

n
ﬁkE'k + Z&kt(ék - Eg) =V, k=1,...,n, (4.4)
H
where E'k = &E,,, k=1,...,n.

Proof. Using (4.3) of Proposition 4.1, define i > 0 by

n
Bk 2 Di(uk+ Pu) =) De|Prel, k=1,...,n. (4.5)

im}
tyh
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Next note that with £ = T}:Ek and, since P is assumed to be a Z-matrix, Pre = — | Pre|, k #¢,
the kth equation of (1.12) yields

Dk(m. + Phk)El, - ZDgl Pkgl E(, =V;. (4.6)
&m1
ek

Combining (4.5) and (4.6) yields

BrEru+ ) De| Pl (Bx - Er) = Vi, (4.7)
=l
Ltk

which implies (4.4) with 6o = Dy|Pre|. 0O

Equation (4.4) can be viewed as a generalized energy balance relation since it involves scaled
modal energies rather than the modal energies themselves. Furthermore, comparing (4.4) to (1.10)
it follows that n

M = (ps — Dapn) B+ ) oue( B — Eo). (4.8)
fml
(2 1]

That is, the power flow from the kth mode to all other modes is, aside from the offset term
(Be— Dk“h)Ek, proportional to the difference between scaled modal energies. In Section 6 we show
that under conservative couplings (4.8) becomes an actual (nonscaled) energy difference power flow

proportionality. Next, however, we show that P is a Z-matrix under weak coupling.
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5. Analysis of P in the Case of Weak Coupling

In the previous section the generalized power flow proportionality was based upon the assump-
tion that P is a Z-matrix. In this section we show that this assumption is valid in the case of weak
but otherwise arbitrary couplings. To do this we expand P in terms of powers of G and then show

that the first term in the expansion is a Z-matrix.

To begin we define for convenience
A2A04A G2GoG (5.1)
so that P defined by (3.5) can be written as
P=ETGE (A+ELGEL)ELGE. (5.2)
For r=0,1,2,..., it i3 easy to confirm the identity

(A+ELGE1) = i(—rlelgm‘rl +(—ATYELGEL)Y A+ ELGEL) (5.3)

+=0

Combining (5.2) and (5.3) it follows that

P=Y Fi+R., (5.4)
s=0
where
PiRETGE (-A" ELGEL) AT ELGE (5.5)
and
R, 28TGE (—A™2ELGEL) T A+ ELGEL)LELGE. (5.6)
Note that
1R, = O(l 4~ ELGELII™®) (5.7)
for ||G]] — O (where || - || denotes arbitrary submultiplicative matrix norms). Clearly the error

incurred in approximating P by Y.._, P depends on the size of 4='£, G€,. This is consistent
with the SEA literature since A~1£, G¢, can be viewed as the ratio of modal coupling to modal

damping. For s = 0,1 we have
Po=ETGELATIELGE, (5.8)
Pp=-8TGE A e GELATELGE. (5.9)

17




Lemma 5.1. Suppose that the assumptions of Theorem 3.1 are satisfied. Then

(Po)kk = —2Re]d _ GreGulul, k=1,...,n, (5.10)
=1

(PO)kt= °2IGk¢I2 Re Iy, £¢ k; t)k= 1,...,n, (511)

(P)ek = —2Re[ Z GkgpaGb,.thGmk], k=1,...,n, (5.12)
Lm=1

(P)ke = ~2Re[ ) (Cam msGmelesG ke + Gim Ik TmeGmeGie,

m=1
+Gk¢I'u;F¢mG'm1_G—km)], L#k, £Lk=1,...,n, (5.13)
where
-1 _
Iy 2 — = vy +vx — (He+ Hi) + 502 — 2,)] 2. 5.14
ws [ve+vn — (He+ Hi) + (O — 24)] (5.14)

Proposition 5.1. Suppose that the assumptions of Theorem 3.1 are satisfied and assume,
furthermore, that ux +p, 20, k#¢ k,£=1,...,n. Then Py is a Z-matrix. If, furthermore,
pe+pe>0, k#L kt=1,...,n, Gu#0, k#¢ k=1,...,n,and |G| is sufficiently

small, then P is a Z-matrix.
Proof. From (5.11) we have
(Po)ke = —2| Gie|® Re Iy,
=~ |Giel? (be + o)/ | T |?
<0.

Hence, P is a Z-matrix. If, in addition, ux + p¢ > 0 and Gk # O, then (Py)xe < 0. In this case
|G|} sufficiently small implies Pi¢ < O so that P is a Z-matrix. O

To understand the significance of Proposition 5.1, consider in place of (3.4) the approximate

energy equation
(b+ P)E=V. (5.15)
If ||G|| is small, that is, the coupling G is weak, then the norm of the residual Rq is of order

lA=2ELGEL||®. Hence in this case (5.15) can serve as an approximation to (3.4).

Proposition 5.1 also shows that if uy + 4 >0and G, #0, k # £, k,=1,...,n, then P
itself is a Z-matrix so that Corollary 4.1 can be applied. Note that if Gx¢ = 0 then (P5)xe = 0 and
thus the sign of P, depends on higher order terms in the expansion of P,. It is interesting to note

that if Gke = O then (P;)xe is also zero so that in this case terms of even higher order play a role.
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6. Specialization to the Case of Conservative Couplings

Many physical situations involve only passive or energy-conservative couplings among subsys-
tems. This is the case considered in the SEA literature. To model this situation we assume that H
and G are skew-Hermitian. If V(z) = z*z represents the total energy of the system, then it follows

that energy dissipation along trajectories of the system (1.3) with w = 0 is given by
d .
a—-t-V(z) =-2z'vz <0, z#0, (6.1)

which is identical to the energy dissipation of the uncoupled system. Thus skew-Hermitian coupling
has no effect on the total system energy. To analyze this case we begin with the following lemma

which corresponds to equation (6) of [11].

Lemma 6.1. Suppose that the assumptions of Theorem 3.1 are satisfied and, furthermore,

assume that G is skew-Hermitian. Then

Pe=0, (6.2)

where ¢ £ .
1
Proof. It suffices to show that (G @ G){e = 0. Note
(GoG)ée=(Go®G)Evecd I,

= (G ® G)vec{I,}
= (G®G)vec I,
= vec(G" +G)
=0. O

Since e # 0, P has a nontrivial nullspace and thus (6.2) implies that P is singular. Note that

(6.2) can be written as

Y Pu=0, k=1,...,n. (6.3)
=1

If, in addition, P is a Z-matrix, then (6.3) is equivalent to

n

Pee =) |Pul, k=1,...,n (6.4)
tan
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Defining oxe =| Peel= —Prey, k#¢ k,£=1,...,n, it thus follows from (1.11)

H}; = deg(Ek - Eg). (6.5)
[ 2
tyh

Using (6.5) we can now obtain an energy difference power flow proportionality as a specialization
of (4.4). This results is obtained directly and not by means of M-matrix theory which was used to
derive (4.4).

Proposition 6.1. Suppose that the assumptions of Theorem 3.1 are satisfied, assume that ?
is a Z-matrix, and that G is skew-Hermitian. Then with ke 2 |Prel, k#¢ k,=1...,n,it
follows that .

#kEk+ZUkt(Ek —E)=Ve, k=1,...,n. (6.6)
{1

tnh

Proof. Equation (6.6) is the kth equation of (3.4) using (6.4). O

Remark 6.1. Proposition 6.1 does not state the ux > 0, which is needed for (6.6) to have the
physical interpretation of an energy balance relation. Note, however, that in (4.4) the coefficient
fix was shown to be positive by means of the diagonal dominance characterization of nonsingular
M-matrices. Invoking this condition here would lead to a scaled energy balance relation in place of
(6.7).

Remark 6.2. Suppose in addition to the assumption that G is Skew-Hermitian, we assume
that Re G =0. Then G = va' , where G is a real symmetric matrix. Consequently, G is symmetric
and thus Remark 3.1 implies that P is symmetric. Hence ox¢ = o4 which shows that the power
flow from the kth mode to the £th mode is equal to minus the power flow from the £th mode to the
kth mode.
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7. Equipartition of Energy

In the case of conservative couplings as considered in Section 6 we can show that energy
equipartition occurs in the limit of strong coupling. Hence assume that G is a fixed skew-Hermitian

coupling matrix and scale G by 4 > 0 so that (1.12) is replaced by

(b+P)E=V, (1.1)
where
P() &P ETGEL[A+ELGEL T ELGE (7.2)
We are interested in evaluating
ES 1]'31;’(;4 + P(v))"V. (7.3)

We sketch the main steps of the derivation.
It can be shown that
E= lim (u+ P)W. (7.4)
Now assume G is symmetric so that P is symmetric. Then by Corollary 7.6.3 of [45)] it follows that
Jim (u+4P) " =47 - prPu—d(utpu-tyty-i, (1.5)

where ()t denotes Moore-Penrose generalized inverse of P (or Drazin generalized inverse since P

is symmetric). Now suppose that G is also skew-Hermitian. Then by Lemma 6.1, Pe = 0 so that
y'* Pp'éy*e =0 (7.6)

Next suppose that P is a Z-matrix. Then it follows from Lemma 6.4.1 of [42] (by setting u = €I)
that P is an M-matrix. Next assume P is irreducible, which is the case if all modes are mutually
coupled. Then, since P is a singular irreducible M-matrix, it follows from Theorem 6.4.16 of [42]
that rank P = n — 1. Thus the null space of P is the one-dimensional subspace spanned by e. Now

it can be seen that

YeeTpud
I—- “_* P“-é(“"% Pp"*)"' = -‘—‘—ee,;;:—‘— (77)
Hence (7.4), (7.5), and (7.6) yield
_ et e(eTV) _ TV
- epeV T epe (e'rue)e (10)
Hence T
e'V
Elez_...=E,,=eT#e, (7.9)

which is an equipartition of energy.
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Concluding Remarks

There are several issues and questions that remain to be explored:

. How restrictive is the assumption that A® A+ &, (G®G)E . is nonsingular? Can the inverse of

this matrix be replaced by the inverse of a matrix of dimension (n? — n) x (n? — n) to account

for the rank of £, 7

. It may be possible to redevelop the theory with real (as opposed to complex) models by allowing

nonscalar blocks in the interconnection structure. The block Kronecker product [46] may be

useful for such a formulation.

. Further quantification of conditions t)-1i1) of Section 2 may be useful. The theory may also be

extendable to the case (V') # 0.

. It may be possible to develop transient (as opposed to steady-state) results for power flow.

. It is well known that power flow can be modeled by time-averaging the unforced response of

the system. Such a dual theory may provide further insights into the power flow phenomenon.
Note that a time-averaging theory may require a dynamic model that is conservative rather

than asymptotically stable.

. Further analysis may reveal more general conditions under which 7 is a Z-matrix, particularly

for the case of strong coupling.

Acknowledgement. We wish to thank Linda Smith for transforming the original manuscript

of this paper into TEX.
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Appendix A. Identities Involving {-} and ().

For matrices A, B € C"*, the following identities are satisfied:

A= {4} +(a), (4.1)
A={A} & (A) =0, (A2)

A=(A) & {A} =0, (A.3)

{{(9}=0, ({ap=o, (A.4)
{(a){B}} = {{a}(B)} =0, (4.5)
{AB} = {{4}{B} +(4)(B)}, (A.6)
((AX{B}) = (A){B}, ({A}B))={AKB), ({AH{B})=0, (A7)
(AB) = {A}(B) + (A){B} + ((4)(B)). (4.8)

Appendix B. Kronecker Matrix Algebra, Definitions and Identities
The following are basic definitions and identities:
vec and vec~! Operators: For A € C**™,
F Ay ]
Aj
Anl
Az

vec A2 | A1z || vec!(vec A)=A

vecd Operator: For A € C"*",




Kronecker Product: For A € C**™ and B € CP*9,

AjnB Aj3B ... Aa.B
AQBA Az-lB Az.zB ees Az,.,.,B P
AﬂlB An:B e e AﬂmB

Kronecker Sum: For A € C**" and B € C™*™,

A®B2A®I.+1I,8BeCrmxnm

Kronecker Algebra Identities: For compatible complex matrices A, B,C, D :

(A+B)®C=A®C+B®C, . (B.1)
A®(B+C)=A®B+AQC, (B.2)
(A®B)T=AT® BT, (A®B)T=AT @ BT, (B.3)

(A® B)(C ® D) = (AC) ® (BD), (B.4)
(A®B)"'=A"'@ B}, (B.5)

vec ABC = (CT ® A)vec B, (B.6)
vec(AB + BC) = (CT @ A)vec B. (B.7)

Define the following special vectors and matrices whose dimensions will be inferred from the context

in which they are used:
¢, = column vector whose rth element is 1 and which is zero otherwise,
E,, £ matrix whose (r, s)-element is 1 and which is zero otherwise (Ers = esel),
U£L,,E.®Ef,
E, £ E,,, where E,, is square,
LY E ®e, EL£Y EQFE, £,21-¢.
The following identities hold for compatible matrices A, B:
Uvl=0uT=U, (B.8)
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vec AT = Uvec A,
A@B=U(B® AU, AeB=U(B@ A,
Ut LU=¢€,, UEL=E1T,
ETu=£T, véi=(,
vec{A} = Evec A = Evec{A},
vec(A) = £ vec A = £ vec(A),
E=ET=¢2 £, =¢€T=¢3,
vec{A} = Evecd A,
T =1,
ETe =ET.
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1. Background and Motivation

The nonlinear comp design introduced in Section 2 and
subsequently explored in the remainder of the paper was initially
motivated by the problem of synthesizing control algorithms for
vibration suppression in large flexible structures. Thus, to provide
the basic background for the present development, consider a flex-
ible structure instrumented, for vibration control purposes, with
electromechanical actuators (to provide control forces) and elec-
tronic sensors (to provide measurements of structural motion used
to construct appropriate drive signals for the actuators). In terms
of modal coordinates, the structural plant model may be given as:

. 0 n ol . [ 3n 1
z=[_n _2"n]z+[b]u. z-—(zz)em , w€R" (1)

where

11 £ diag (M)} = modal frequencies
n 2 diag {m} = modal damping ratios
b = modal actuator influence coefficients, where for simplicity,
we consider only one actuator so that b € IR’
Again, for simplicity in the present exposition, we suppose that

there is one rate sensor, collocated with the actuator. Then the
sensor output, y, is given by:

y=>5Tz (2)

The actuator input signal, u, is generally synthesized from the
measurement signal, y. The generic form of a linear controller is:

u=~|Kp, Kv(;;) (3)

where £ = (;' ) € IR« is the state vector of a dynamic compen-
2

sator. Assuming analog (continuous time) implementation of the
controller, 2 evolves according to:

é=[_°n _gm]z«»[g‘j]y )
where Kp, Ky, Fp, Fy are constant gain matrices and

N=diag{A}), A.>0,i=1...,n
ﬂ=di‘l{ﬁ-): H>0,1=1...,n

It is seen that the generic linear compensator consists of a collection
of oscillatory modes, as does the plant. As will be seen, to be
effective, the compensator modal frequencies, 12,, must stand ir a
certain relationship to the plant frequencies.

To probe some of the limitations of linear compensation for
structural vibration suppression, we first note that the action of the
compensator can be understood in terms of its effect on the energy
of vibration. As a measure of the amplitude of the k'vibration
mode, define:

1 2 .
Ee3~ <zl ~2% > (5.4)

2

where < > denotes a time average over several periods of vibration.
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The physical significance of E,, is that it is the time average of the
total mechanical energy (kinetic + potential) associated with the
k*® plant mode.

Accordingly herein, E, is termed the k*" plant mode energy.
Similarly, we define the “k*“compensator mode energy”:

1
E. 2 3<fh+ih> (5.6)

which may also be interpreted physically as the electromagnetic
energy stored in the inductive/capacitive elements of the analog
controller electronics.

The system dynamics can be understood in terms of the energy
sharing and power flow between structure and controller. It is
known quite generally that equations of motion can be formed for
the determination of the Ei’s and £)'s alone. To illustrate this,
consider an inherently stable form of the linear control law:

Kp =0, Ky =KET;

- (6)
Fp =0, Fy=xb
where x is a real nornegative constant and b € IR™. This control
is stable for all b € R'", b € R" because zTz+ 37 2 is a Lyapunav
function for the closed-loop system. Applying the principles of Sta-
tistical Energy Analysis {1], we obtain the following (approximate)
equations-of-motion for the plant and compensator modal energies:

d

ZEE = =2mEp + ;tnz(tz -~ Ey}) (7.a)
k=1,...,n

d

IE" = ~2hpll B + ;m(& - £y (7.8)
k=1,...,n,

where:

oxe = S22 B? Mefle & fefle (8)
2 (nefde + 5efde)? + (I - 12:)3)

(7) is a set of power balance relations displaying the way in
which the feedback gains meditate the exchange of energy among
the plant and compensator modes. (7.a), for example, states that
the rate of change of the k*"plant mode energy equals the sum of
the power loss due to dissipation (~2nf2 Ex) and the net power
flow from the k'“plant mode into all the compensator modes
(Eu’u(tz ~ Ep)). The net power flows are seen to be propor-
tional to the energy differences and, because of the nonnegativity
of the coefficients oxe, power always flows from the higher energy
mode to the lower energy mode. This energy exchange is more
rapid, the larger is the power-flow coefficients ox¢. An efficient lin-
ear controller design achieves its results by making the oy, 's as large
as possible, to facilitate energy transfer from plant to compensator,
and by choosing the fi,'s { the compensator modal damping ratios)
somewhat larger than the n's, thereby speeding up the dissipation
of the energy transferred to the compensator.

Equation (8) shows that the power flow coefficients are in-
herently nonnegative and are sharply peaked functions of the fre-
quency separation, | [2, — {2, , between plant and compensator
modes. Thus, efficient linear control design (via Linear-Quadratic-
Gaussian design, for exanmiple) maximizes the e/’s by choosing




the (3 to nearly match the plant mode freq jes. Thus f e
of quadratically optimal design, while it confers great efficioncy,
is also the source of major limitations. First, designed-for per-
formance can be achieved only if the plant modal frequencies are
accurately estimated in advance. In any case, a particular plant
mode exchanges energy efficiently only with the compensator mode
that matches its frequency.

The primary question addressed here is: Is it possible, by re-
placing the constant gains in (6) by fanctions of y and/or 2, to
create a nonlinear compensator that achieves more efficient power
flow between plant modes and compensator modes - i.e., energy
exchange that is nearly independent of the modal frequency differ-
ences and that perniits large power flow from any one plant mode
simultaneously to all compensator modes? In the following Sec-
tions, we propose a nonlinear compensator design and investigate
the design vi1a both numerical simulations and analysis. Although
the results are by no means complete, these exploratory investiga
tions indicate an affirmative answer to the above question.

We find that, independently of plant modelling errors, the non-
linear compensator provides very effective vibration suppression.
Moreover, the compensator can be viewed as the interconnection
of very simple modular units and its effectiveness increases in pro-
portion to the number of modules. This raises the question: Can
the proposed nonlinear compensator be realized in a neural net?
Accordingly, we demonstrate, in Section 5, that the nonlinear com-
pensator can be implemented as a neural net with analog neurons.

3. A Nonlinear Compensstor for Structural Vibration
Suppression

With plant model (1) and (2), let us consider, in place of the
linear controller (3), (4), (6), the nonlinear controller:

um ~xyeT2; 9)

3= [-On _gﬁ]i+ny[(:]y (10)
where:
ef 2 (1,1,...,1)

In effect, we have replaced x in (6) by xy where y is the sensor
measurement signal (2), and « is again a nonnegative constant
whose magnitude indicates the controller “gain.® We now study
the dynamics of the closed-loop system defined by (1), (2}, (9},
and (10).

The intuitive reasoning behind the choices (9), (10) is as fol-
lows. First, although we retain the modal character of the linear

compensator ~i.e., the term —On _2 ﬁﬂ] 2, the feedback gains

are now chosen proportional to the measurement signal y in order
to obtain a gsadratic nonlinesrity for the compensator as a whole.
Motivated by analogies with fluid dynamic turbulence, a quadratic
nonlinearity was desired in order to promote chaotic® motion in
the closed-loop system. This chaotic dynamics endows the sig-
nal y with a smooth, broad band power spectrum with no spilses
or dominant harmonics. The resulting broad-band character of the
“feedback gain®, xy, is expected to give rise to very sfficient power-
flow from each plant mode to all compensat des in a m

that is largely insensitive to the precise values of the structural
modal frequencies.

To see if the above intuitive mations were correct, we first ob-
served closed-loop 1 erformance via *brute force® numerical simuls-
tions for 3 particular model of the structural plant. Specific results
and general observations are given in the next Section. Then using
some of the general empirical observations from the simulations,
a semi-empirical theory was developed in the form of a system of

* In using the term “chaotic dynamics” herein, we refer to the
operational definition given in (2] - namely, a system exhibits chaotic
dynamics when, despite purely deterministic initial conditions and
periodic inputs, its measured response exhibits smooth, continuous
power spectra.
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energy flow equations analogous to (7). These results are given in
Section (4).

3. Numerical Simulations for an Example

For preliminary in of the compensator (9), (10}, we
performed numerical simulations for a particular example of the
structural plant (1), (2). The example chosen is 2 string extended
along z € [0, L), held fixed at both ends with uniform tension T.
The potential differential equation for the lateral deflection, w(z,t)
- O

w w
g =T + 1) (11)
w(0) = w(l) =0

where p is the constant lineal mass density and f(z) is the force
distribution due to a single control actuator. The modal decompo-
sition of this system has the form:

w(z,ty = Y Valz)ualt) (12)
&

L
(/o dz¥i = 1)

We(z) = \/%sin Iur%

where, assuming uniform proportional damping, the modal coordi-
nates wy, satisfy:

L
Gy + 2nfnie + DPun = % / daWa(2)f(2) (13)
0

Now, we nondimensionalize variables so that \/if =1land if =

i\/; and suppose that f(z) arises from a point force actuator
located at z = {sL. Then:

we + 20y + QJwy = bpu (14)

W=k
by =sinkxfa

Finally, assuming a collocated sensor and defining the plant state
as zT £ (Mwy,...,0,wn, U1,...,Wn), the equations of motion
are found to be identical in forms to (1) and (2} with:

M=k k=1,...,n
nx = n = constant damping ratio (15)

b7 = [sin €, sin2xE,,...,sinnxE,]

With the above expressions and for a variety of choices of
0,1 and n, we conducted numerical simulations of the closed-loop
systems consisting of (1), (2), (9) and (10} with various initial
conditions. The qualitative results are not very sensitive to the
choice of {3 or the initial conditions. Some of these results are
illustrated in Figs. 1 and 2, which pertain to the case /i = n =
0.002, % = 2, & = 0.3 and n = 20 (so that there are 80 states
in the closed-loop simulation) and with initial conditions such that
the first mode has unit displacement and velocity and all other
states are sero -i.e.

zT(0) = (1,1,0,...,0)

The simulations were obtained using a fourth-order Runge-kuvta
integration routine. Special care has to be exercised in selecting a
sufficiently small integration time-step, since, as will be seen, y(t)
exhibits very high frequency content for sufficiently large values of
.

Fig. 1 shows time histories of the displacement response of
the initially excited first mode and the corresponding time histo-
ries of the sensor measurement for three typical values of x. For
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very small «, the first mode response shows a lightly damped peri-
odic motion dominated by the first mode frequency and y(t) shows
similar characteristics. Slightly larger values of « result in weakly
damped periodic motions with higher harmonics of the first mode
frequency coming more into play.

On the other hand for x above some critical threshold (which
is roughly unity in this example), the response time histories ex-
hibit a qualitative change. As illustrated by the middle plots in
Fig. 1, the initially excited mode drops dramatically in amplitude
after a relatively brief period and then is damped slowly thereafter.
Naither z;(t) nor y(t) exhibits any apparent periodicities and y(t),
in particular, shows evidence of higher frequency content. All of
these tendencies are amplified for still larger values of x {see the
bottom of Fig. 1).

Further insight into the system dynamics is afforded by Fig.
2 which shows {under the same conditions as in Fig. 1) the time
histories of the instantaneous modal energies (defined by equations
(S) but without the time averaging) and the corresponding power
spectra of y(t). For small x (top part of Fig. 2) energy sloshes back
and forth among the first several plant modes and the power spec-
trum of y exhibits sharp isolated spikes. For x above the threshold
(middle part of Fig. 2), it is seen that the rapid initial drop off of
the first mode energy is accompanied by a redistribution of energy
into all the other modes, so that after a brief period, all the plant
and compensator energies are roughly equal. During the period
wherein modal energies are equalised, the total energy, Ex:

B2 E+3 A (16)
=1 k=]

does not appreciably decline. Er is dissipated at a rather small
rate consistent with the assumed plant and compensator damping
ratios (n = j = 0.002). Thus, the rapid decline in the initially ex-
cited mode observed in Fig. 1is due not to direct energy dissipation
but to the flow of the first mode energy into all other modes. Ac-
companying the modal energy equalisation phenomenon, the peaks
in the power spectrum of y have broadened and coalesced to form a
continuous spectrum. Since the spectral peak broadening and co-
alescence is much larger than what can be attributed to damping
and to the finite time period of the time sequence used to calcu-
late the spectrum, it is apparent that the system undergoes chaotic
motion for £ above the critical value.

The above tendencies are strengthened for still larger values of
x (bottom part of Fig. 2). Modal energy equalization occurs even
sooner, the energy flow to all modes occurring at nearly the same
rate; regardless of the relative values of the modal frequencies. The
power spectrum of y is further smoothed and broadened. Indeed,
the spectrum of y is nearly constant over the whole frequency band
occupied by the plant and comp tor modal freq i

The above findings tend to confirm the heuristic insights used
in constructing the design (9), {10). In particular the quadratic
nonlinearities in the compensator do trip the system into chaotic
motion, resulting in a broad-band spectrum for y(t) and very of-
ficient energy flow among all the plant and compensator modes,
even for modes having widely separated frequencies.

Surveying all the simulation results, we obtain additional ob-
servations regarding time.averaged corrslation, autocorrelation
functions and power spectra that prove useful in constructing a
semi-empirical theory of the dynamics of the nonlinear compen-
sator. With regard to correlati and aut relations, we have:

0.1 For t larger that ~10 lowest mode periods, the separate
modal coordinates z14,23x; k = 1,...,n are approxi
mately uncorrelated (in the sense of time averaging)

0.2 Again for t210 lowest mode periods, the autocorrelation
coefficient of y:

pylt. ) & <ylelyle—r) >/ <y(e) > (17)

is approximately independent of t {i.e.. it is weak-sense
stationary)
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In addition, we have observations concerning the changing
character of the power spectra of the plant modal velocities, 23,
k= 1,...,n, as x increases. We denote the power spectrum of
Z2a by §,,,(w). Noting that the correlation coeflicient, p,,, (), is
the inverse Fourier transform of S,,, (w)/ [;~ dwS;,,, the following
obeervations also have direct import for correlation functions:

0.3 For very small «, S,,, exhibits isolated spikes at the fre-
quencies of excited modes having half-power widths equal
to 2l

0.4 For larger x, near the critical threshold value «,, S,,,
shows spikes at many additional modal frequencies. The
width of the spikes grows to ~ nE-g (£x given by (16)].
The value of &, appears to be roughly —‘}-Su, where §w

E.

T
is the minimum separation between plant modal frequen-
cies.

0.5 For & >> x., the spikes in S,,, coalesce into a smooth,
broad-band spectrum, which is approximately constant
up to some frequency 2, and then drops off rapidly at
higher frequencies. The value of {2, is roughly x.E.?..

4. A Semi-Empirical Theory for the Energy Dynamics of
the Nonlinear Compensator

Here we use the simulation results and corresponding observa
tions discussed in the last Section to construct a semi-empirical the-
ory for the nonlinear compensator (9), (10). The theory takes the
forma of approximate equations-of-motion for the time-averaged
modal energies analogous to (7). These equations are then used
to deduce various qualitative phenomena and provide a few useful
design guidelines.

Space limitations preclude the full derivations, which will be
given elsaewhere. Here we attempt merely to sketch the develop-
ment.

The first step is to form equations of motion for the “second
moment matrix”, Q £ (;) (=T, 27), of the full closed-loop sys-

tem (1), (2), (9) and (10). We then manipulate the equations to
eliminate the cross-correlation terms in favor of the modal mean-
squares z2, 22; k=1...n, m = l...n, apply the time av-
eraging operator and employ a perturbation expansion approach
to obtain equations approximately valid for small x. Neglecting
terms of order x* or smaller, we obtain the following equations
for the time-averaged plant-mode energies, E;, and compensator
mode energies £y

Eb = =2mIB By +Z&u(£¢ - Eg), k=1...n
[

. (18)
By = 2B+ da(Ec-£Bi), k=1..n
¢
where:
i
S = n’b,’,/ dr < y(t)y(t —r) > v kL(r)
. 0 (19)
Taelt) & Ec"“'“""‘”"'[cm(u; — Wg)t + cos{wyde)t)
and where wy,dx denote the damped natural frequencies:
wy 2 /1 - nd (20)

o & /1 - 2

Although developed for small x, equations (18] appear to give
correct results even for large x. This may be due to the semi-
er pirical manner in which explicit expressions for the coefficients
ue are derived, as discussed in the following.

It remains to express Gx¢ explicitly in terms of the modal ener-
gies. To do this we use the empirical observations 0.1 through 0.5

Rk
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given in the previous section. First, and immadiate consequence of
0.1 and 0.2 is:

<ylthlt-r>=3 B <) >rmlr)  (21)
Y
where

ba.(7) 2 <zan(t)zaa(t- 1) > / < (0] > (22)
However, neglecting higher-arder terms in x; < 23, > = E,(¢).
Using this approximation ia (21) and substituting the result into

e ﬁ'.:
Bue = 0} Y 03 Emlomne {23.0)
i 2 / ' droa . (*)ne(r) (23.5)

°

Next we deduce the form of I'mae by considering two limitir g
cases: very small x and very large x. In the case of very small x,
0.3 implies:

Panl(r) = 677" cos wmr

This can be substituted into {23.b) and I'mye evaluated directly.
For large x, we use 0.4 and 0.5 together with dimensional analysis
to deduce the asymptotic form of [ns,. As the last step, an expres-
sion for [y, is devised which correctly reduces to the expressions
derived for the two limiting cases. The final result is:

ERET S DML N W (24.0)
-
Fose = 3(Am + mls + k)
{(4... + nufly + a.r).)l= + (W + wi — G¢)?
(Am + il + #e ﬂ,;’ + (Wm — w + @e)?
(Bm + a2 + Wiz 033 + (W + Wi + @¢)?
(Bm + nafls + e m;’ + (wem — wi = ©¢)? (244)
O £ 00l +E} (24¢)

where wy,Oy and ET are defined in (20) and (16}, respectively.

Equations (18) and (24) constitute a closed system of equa~
tions approximately describing the dynamics of the modal energies
of the plant and compensator and may now be used to deduce
various properties.

First, it should be noted that (18) are of the same structure
as (7). The power flow from any one mode to all other modes
is again proportional to the energy differences and because the
coupling coefficients 3¢ are all intrinsically positive, power always
flows from the more energetic to the less energetic mode. These
features ensure that the system will be driven toward equalisation
of modal energies with the time scale for equalisation being dictated
by the magnitude of xE.;.. This is consistent with the qualative
observations of the last section. Furthermore, (24) shows that for

sufficiently large x; Inae approaches the uniform limit - so
<Ej

that: 32
Fue > :J*' < y2 >
Et

Thus, in contrast to (8), there is strong power flow from any one
plant mode to all other compensator modes, regardless of the rel-
ative values of the plant compensator frequencies. This efficient
energy sharing is a consequence of the noulinearity introduced in
the compensator design {9} and (10).

As a last topic, we use (18) and (24) to obtain simple quantita-
tive estimates of the speed with which structural vibration energy

2572

can be drained away to the compensator via nonlinear design. For
this purpose, consider the case wherein a set of ng structural modes
are directly excited and it is desired to reduce the vibration energy
of these modes because of their determinous impact on system per-
formance. We estimate the closed-loop response by taking account
of the interactions between the compensator modes and only these
directly excited modes.* For simplicity, suppose that all ng, modes
are initially excited to the same energy: .

E\0) =B Vk=1...ng

and that the compensator is initially quiescent; ie., E,‘.'” = 0 Vk.
Also let us estimate the magnitude of all the modal influence co-
efficients by soms average value §, i.e., b = §2 Vk. Pinally, since
flexible structure vibration control is our motivating application,
we assume small damping ratios for both plant and compensator;
ie., s << 1.0, i, << 1.0.

With the above conditions, supp~se that {0, A2} is the fre-
quency band encompassed by all the initially excited modes. We
need only choose the n, compensator frequencies, fs; k= 1...n.,
somewhere in this band, because, as (24.b) shows, the choice of «
such that

<E} > 340 (25)
sures that all the [,n,.'s reduce to the same value, —L;-. inde-
‘BT
pendently of the compensator frequencies. The design choice (25}
implies, by use of (24.a), that:

kb3
e = -E:}: Z Emn (26)
Using this result and the fact that during the initial period of en-
ergy equalisation, 3, E., can be estimated by Ex, equations (18)
become:

N
Ex = -2mMEw +<E3P Y (B~ B k=1...n4

(£ 31

t = —26..0.3., + KE%E’ "Z‘(Eg - E.); k=1.. -Re

=1

Ek(o) = Eo, E;(O) =0 vk

(21)

Note that the above equations imply:
d o
IET = -2(21‘: el Ex + zk: 'lkﬁksk) {28)

Ex(0) = ngEo

Evidently, the total energy is dissipated over a time scale of or-
der ;k or # (for some k). By virtue of our small damping ratio
assumption and design choice (25), this time scale is much longer
than the time scale over which the initial energy redistribution
takes place. For investigation of the initial period of energy equal-
isation, therefore, we may treat Et as a constant =~ n,;E; and
neglect the damping terms involving ne and 7y in (27). With these
approximations, one immediately obtains the following solutions
for the relatively brief initial time period over which energy redis-
tribution occurs:

Eo—if"—(x-e"”-); k=1...n,

E.= ng +
4+ N (29)
E = &E}J—(X —etTY, k=1 .n.
ng + N,
where:
T2 ! (30

3
shiBin,(n; +n.)

* This simplification actually results in an overestimation of the
energies resident in the n, excited modes.
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Thus, after a time period of order T, the energy initially resid-
ing in the plant structural vibration is drained away to the compen-
sator modes and all modal energies are approximately equalised
to:

Ex Ex

2T , ]
t> T, E.:-.n“’n‘ g, y—y vk (31)

Now for-t >> T., we can characterise the evolution of the
total energy, Et, by using (31) in (28) to obtain:

t>>Ta: %Er x -2 (z: il + Zﬂbnh)sr (32)
* Y

Thus, over large time scales, the total energy is damped exponen-
tially with an equivalent damping ratio that is & weighted average
of both the plant and compensator damping ratios.

Another noteworthy feature of the above results is that both
the time period, T, (equation (30)), needed for equalisation of en-
ergies and the value to which the modal energies are equalised
(equations (31)) are universely proportional to the aumber of com-
pensator modes. Thus, especially effective vibration suppression
can be achieved by the nonlinear compensator if the number of its
states can be made very large. This, suggests the question: Does
the compensator (9), {10} have a simple repetitive structure can
this structure be implemented as a neural net containing a large
number of analog neurons?

5. A Neural Net Realisation of the Nonlinear
Compensator

Equations (9) and (10) may be rewritten to reveal that the
control signal u is the sum of n. components:

u= w (33)

where each u, is the output of & simple nonlinear oscillator:

. up = —xyiy )
$(8) [ ama] (B)+(8)

Thus, the nonlinear compensator is a combination of simple repet-
itive modules and this suggests that it can be efficiently imple-
mented as a neural network.

To see that this is the case, define g(-) to be some antisym-
metric sigmoidal function such that ¢'(z) is maximum at z = 0,
where g'(0) = 1. Then consider the replacement of (34} by:

. = —ryg(in) .
% g" =i la) -0 o ] (9(5:;) + e (2)
(35)

The above equations essentially reduce to (34) for small signal
amplitudes such that g(z) = =z.

It is now sasy to see that (33), (35) are equivalent to a system
formed by interconnection of analog neurons, of the form given
by Hopfield, illustrated here in Fig. 3. Using such neurons, we
form neuron pairs in the manner shown in Fig. 4.2, such that
each neuron pair implements one compensator mode. We finally
interconnect n. neuron pairs as shown in Fig. 4.b to obtain a
system completely equivalent to (33), (35).

[t is seen that this as an implementation involving very sparse
neuronal interconnections. Note also, that just as -} Talzde +
zh) + 4 T,(21, + 23,) is a Lyapunov function for the closed loop
system (1), (2), (9), (10); so too, the quantity

n n, ity vait}
Js %Z(Iﬁ +zh)+ Y (/; 9(x)dx+/; g(x)dx) (36)

k=] k=l

.
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is a Lyapunov fuaction for the systems (1), (2), (33), (35), since:

u " Ny . -
= ="2 Z i, - 2 tlh(g(&)én + glar)in)  (37)
=]

hml

Thus the controller (33), (35) is inherently stable.
Summary and Conclusion .

In this paper, we explored a novel type of nonlinear dynamic
_controlhr design that was originally motivated by certain issues
in the problem of vibration suppression in Sexible structures. Be-
cause of the particular form of quadratic noalinearities, the con-
troller provides extremely efficient energy exchange mechanisms
capable of rapidly draining energy away from the structural plant.
In addition the controller was shown to consist of the interconnec-
tion of simple repetitive modules and its effectively increases with
the number of such modules and its effectively increases with the
number of such modules. These features motivate the implementa-
tion of the nonlinear controller via the neural network architecture
explored in the last Section. With the advent of appreciate ana
log neural net hardware, this suggested nonlinear compensation
scheme could offer a very effective means of vibration suppression.
For example suppose some 10 structural modes are significantly
excited and must be suppressed and we employ the neural net
controller involving a modest number of neurons, say 2000. Then
ng = 10, n. = 10% and it is seen from (31) that the vibrational
energy of each excited mode is quickly reduced to of its

initial value - a reduction of more than a hundredfo’l:if

e
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Fig. 1: Time histories of the initially excited modal displacement
and the sensor measurement for {1 = ﬂ.. fix = 0.002 and
various values of x.
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Fig. 2: Time histories (for the same conditions as Fig. 1) of the
instantaneous model energies (E. = §(z3, +23.), £ =
(%3, +£3,)) and the corresponding power spectra of the
sensor measurement.
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Fig. 3: Basic structure of an analog neuron following Hopfield
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Fig. 4: Implementation of controller {33), (35) via a neural net-
work:

(a) fundamental neuron pair, (b) overall architecture.
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Real Parameter Uncertainty and Phase Information in the Robust Control of Flexible Structures
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Abstract

Real parameter uncertainty and phase information play a role in
the analysis and synthesis of robust controllers for lightly dam flexible
structures. In this paper we discuss the ramifications of this issue as it af-
forts achievable performance in structural control. In this regard we review
the state of knowledge in addressing real parameter and phase issues. The
discussion is illustrated by examining robust controllers designed for the
ACES structure at Marshall Space Flight Center. These controllers were
designed by means of the Maximum Entropy generalised LQG methodol
oty

1. Introduction

. Traditionally, spacecraft control-system designers have been primar-
ily concerned with controlling rigid body attitude modes, while avoiding
the excitation of flexible body dynamics. As formance requirements
)ecome more stringent and spacecraft become larger, controbsystem de-
sign must explicitly encompass flexible dg:amic modes so as to actively
suppress undesired structural vibration. Furthermore, for complex space-
craft, multi-input multi-output controllers with significant bandwidth may
be required.

. Since structural modeling and identification of large flexible structures
in a 1-g environment possess inherent limitations, one of the key issues in
structural control is robustness. Although robust control has undergone
intensive development in the past two decades, there remain aspects of ro-
bust control that are relevant to structural control and that are largely
unresolved. These aspects are the role of real parameter uncertainty and
phase information. The purpose of this paper is to examine the impact of
these issues on structural control, their interrelationship, and their mani-
festation within the analysis and synthesis of feedback systems.

2. Phase Stabilisation Versus Gain Stabilization

From a classical control-design point of view, the issues of real param-

eter uncertainty and phase information are manifested in the fundamental
concepts of gain and phase stabilisation. In terms of gain stabilisation,
stability of a single-input single-output closed-loop system is insured by
designing the controller so that the magnitude of the loop transfer func-
tion is less than unity in frequency regimes in which the phase is either
known to be near 180° or is highly uncertain. In terms of phase stabilisa-
tion, stability is achieved by insuring that the phase of the loop transfer
function is well behaved where the loop transfer function has gain greater
than unity. Roughly speaking, phase stabilization can be used to allow
high loop gain and thus achieve high performance in frequency regimes in
which sufficient phase information is available, whereas gain stabilisation
(e.g., rolloff L is needed to insure stability where the phase of a system is
very poorly known. For further discussion of the distinction between phase
and gain stabilizsation, see {1].

3. Structured Real Parameter Uncertainty Versus Unstructured
Complex Parameter Uncertainty

A variety of approaches have been proposed for addressing uncertainty
in the synthesis of robust controllers. These include Ho synthesis [2-
$], quadratic Lyapunov functions [6-9], and the structured singular value
[10,11]. All of these methods effectively treat the uncertain parameters as
complex quantities, and are thus conservative with respect to real param-
eter uncertainty. If the uncertain parameters are known to be real, then
special techniques are required to avoid conservatism [12-19).

To illustrate the conservatism of H,, theory in the presence of phase
information, it need only be noted that |¢’% = 1 ngardpleu of the phase
angle ¢. Indeed, any robustness theory based upon norm bounds will suf-
fer from the same shortcoming. Of course, every real parameter can be
viewsd as & complex parameter with phase ¢ = 0° or ¢ = 180°. Since the
existence of a single Lyapunov function for 3 norm-bounded uncertainty
clase is equivalent to a small-gain condition {9}, much of Lyapunov theory
exhibits a similar conservatism.

In structural modeling via finite element models, uncertainty in the
mass, damping, and stifiness matrices is unavoidable. If the mass and stiff-
ness matrix uncertainty is modeled as complex, unstructured perturbations,
then the damping matrix is effectively perturbed as well. Indeed, damping
is sometimes darac stiffiness 20, p. 194]. Difficulty arises
when stiffness uncertainty is large relative to damping uncertainty, in which
case complex stiffness uncertainty corresponds to a physically unrealisable
unstable plant model.

4. Phase Information and Positive Real Transfer Functions

Phase information plays a fundamental role in structural control. For
illustration, consider a flexible structure with a colocated rate sensor/force
actuator pair and assume these devices arc ideal. For such a system the
transfer function from the actuator to sensor 1t known to be positive real,
that is, to have phase lying between 90" and -90" !21,221. In a negative
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feedback configuration, a controller for this plant that is strictly positive
real cannot destabilizse the system since the loop transfer function has phase
less than -180° over all frequencies. Hence such a control system will be un-
conditionally robust to uncertainties in both natural frequencies and damp-
ing. Of course, these observations assume perfect sensors and actuators so
as not to introduce additional phase lag. If the sensors and actuators do
have significant dynamics, then the feedback law must be chosen so that
the transfer function consisting of the cascaded sensor, compensator, and
actuator dynamics is strictly positive real. If, in practice, positive realness
can only be enforced over a limited frequency band, then loop gain rolloff is
required when phase lags or phase uncertainties reach unacceptable levels.
. By exploiting the stability guarantee due to the interconnection of pos-
itive real MIMO systems, robust positive real controllers have been studied
for structural control [23-31]. A related approach involves using H,, de-
sign in conjunction with the bilinear transformation [32]. By using a Riccati
equation to enforce a positive real constraint, robust controllers for positive
real uncertainty were obtained in [33]. Related results appear in [34].
Alternative approaches to including phase information in analysis and
synthesis include [35-38]. Ref. PQ] extends the gain envelope approach of
|40,41] to include a phase envelope as well. These envelopes are charac-
by real panmtu: whose effect can then be addressed using real
ter robustness tec "
An alternative approach to exploiting phase information is based on
the concept of structured covariance matrix. Roughly speaking, robustness
is uot guaranteed by means of a Lyapunov function or covariance bound (8],
but rather by means of a covariance matrix whose structure is insensitive
to a given class of plant perturbations. This concept provides the basis
for the generalised LQG synthesis technique known as Maximum Entropy
design [42-48].

teris
par

5. An Illustrative Example Using Maximum Entropy Synthesis

The ACES experimental testbed is located at NASA Marshall Space
Flight Center. The basic test article, a spare Voyager Astromast, is a
deployable, lightweight {about 5 pounds), lightly damped beam, approxi-
mately 45 feet in length. The Astromast is symmetric with a triangular
cross section. Three longerons form the converse of the beamn and extend
continuously along its full length. The cross members, which give the beam
its shape, divide the beam into 91 sections each having equal length and
mass and similar elastic properties. When fully deployed, the Astromast
exhibits a longitudinal twist of approximately 260 degrees.

The ACES configuration consists of an antenna and counterweight legs
appended to the Astromast tip and the pointing gimbal arms at the As-
tromast base. The addition of structural appendages creates the “nested”
modal frequencies characteristic of large space structures. Overall, the
structure is very flexible and lightly damped. -It contains mulniy’ closely
spaced, low frequency modes (more than 40 modes under 10 Hs). The
ACES configuration is dynamically traceable to future space systems and
is particularly responsive Lo the study of line-of-sight (LOS) issues.

The goal of the control design is to position the laser beam in the cen-
ter of the detector. The disturbances were chosen to be position commands
to the Base Excitation Table (BET). The BET miotion is regulated by an
analog controller which allows any type of BET movement within the fre-
quency limitations of the hydraulic actuation system. In the discussion that
follows we will consider only one linzle-input, single-output loop involving
AGS-X, the x-torque of the Advanced Gimbal System, and BGYRO-X, the
rotational rate of the base gyro.

For the AGS-X to BGYRO-X loop a model was developed by using the
Eigensystem Realisation Algerithm. The ERA model was compared with
the frequency response functions (FRF's) derived from the test data. The
ERA model matched the FRF data fairly closely in magnitude although
the modal frequencies do not exactly coincide. {‘lu ERA model differed
even more from the FRF's in phase.

Control design for LOS performance, initially performed by using stan-
dard LQG techniques, required penalising only the modes less than 3 Hs.
Thus, high performance controllers were limited to having gain only at the
modes less than 3 Hs. To avoid destabilizing the two higher frequency
modes of the ERA model, the LQG controllers contained notches at the
two corresponding frequencies.

The LQG controllers tended to be very sensitive to the phase uncer-
tainty in the performance region, the frequency interval from DC to 3 Ha.
They also were very sensitive to the frequency uncertainty in the two higher
frequency niodes. This control problem thus provides an excellent reaklife
example of phase uncertainty and real parameter (in this case frequency)
uncertainty.

Robust control design was performed using the Maximum Eatropy
(ME) approach '49]. This approach allows the designer to directly account
for real parameter uncertainty [42-48]. Figure 1 describes the influence of
ME uncertainty design on the phase of a full-order compensator in the per-
formance region. The phase of the LQG compensator varies widely (and
wildly) over this frequency interval, implying that the Nyquist plot of the




corresponding loop transfer function encircles the origin several times. As
one would expect, these designs were nonrobust and, in fact, were unstable
vhn implemented. However, the ME designs became positive real in the
performance region tending toward rate feedback. Thus, the ME designs
the loodnd stability robustness in the performance region. In ad-
, the ME designs robustified the LQG coatrolkt notches by increasing

b“h the width and depth of the notches (Figure 2).
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In many applications of feedback control, phase information is available concerning the plant
uncertainty. For example, lightly damped flexible structures with colocated rate sensors and force
actuators give rise to positive real transfer functions. Closed-loop stability is thus guaranteed by
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1. Introduction

In many applications of feedback control, phase information is available concerni